ملاحظات

الفصل الأول: مقدمة إلى المرونة العصبية

(1)
Rosenzweig, M. R. 1996. Aspects of the search for neural mechanisms of memory. Annual Review of Psychology 47: 1–32.
(2)
Costandi, M. 2006. The discovery of the neuron. Neurophilosophy blog, 29 August, 2006. https://neurophilosophy.wordpress.com/2006/08/29/the-discovery-of-the-neuron/.
(3)
Rosenzweig, M. R. 1996. Aspects of the search for neural mechanisms of memory. Annual Review of Psychology 47: 1–32.

الفصل الثاني: التعويض الحسي

(1)
Finger, S. 1994. Origins of Neuroscience: A History of Explorations into Brain Function. Oxford University Press.
(2)
Costandi, M. 2008. Wilder Penfield: Neural cartographer. Neurophilosophy blog. https://neurophilosophy.wordpress.com/2008/08/27/wilder_penfield_neural_cartographer/.
(3)
Bach-y-Rita, P., C. C. Collins, F. A. Saunders, B. White, and L. Scadden. 1969. Visual substitution by tactile image projection. Nature 221(5184): 963-964.
(4)
Thaler, L., S. R. Arnott, and M. A. Goodale. 2011. Neural correlates of natural human echolocation in early and late blind echolocation experts. PLoS ONE 6(5): e20162. DOI: 10.1371/journal.pone.0020162.
(5)
Striem-Amit, E., and A. Amedi. 2014. Visual cortex extrastriate body-selective area activation in congenitally blind people “seeing” by using sounds. Current Biology 24(6): 687–692.
(6)
Voss, P., and R. J. Zattore. 2012. Organization and reorganization of sensory-deprived cortex. Current Biology 22(5): R168–173.
(7)
Sadato, N. 2005. How the blind “see” braille: Lessons from functional magnetic resonance imaging. Neuroscientist 11(6): 577–582.
(8)
Lyness, R. C., I. Alvarez, M. I. Sereno, and M. MacSweeney. 2014. Microstructural differences in the thalamus and thalamic radiations in the congenitally deaf. NeuroImage 100: 347–357.
(9)
Ward, J., and T. Wright. 2014. Sensory substitution as an artificially acquired synaesthesia. Neuroscience and Biobehavioral Reviews 41: 26–35.
(10)
Zembrzyckia, A., C. G. Perez-Garcia, C.-F. Wang, S.-J. Choub, and D. D. M. O’Leary. 2014. Postmitotic regulation of sensory area patterning in the mammalian neocortex by Lhx2. Proceedings of the National Academy of Sciences 112(21): 6736–6741.

الفصل الثالث: مرونة النمو

(1)
Purves, D., and J. W. Lichtman. 1985. Principles of Neural Development. Sinaeur.
(2)
Hamburger, V., and R. Levi-Montalcini. 1949. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. Journal of Experimental Zoology 111(3): 457–502.
(3)
Cohen, S., R. Levi-Montalcini, and V. Hamburger. 1954. A nerve growth stimulating factor isolated from sarcomas 37 and 180. Proceedings of the National Academy of Sciences USA 40(10): 1014–1018.
(4)
Aloe, L. 2004. Rita Levi-Montalcini: The discovery of nerve growth factor and modern neurobiology. Trends in Cell Biology 14 (7): 395–399.
(5)
Harrington, A. W., and D. D. Ginty. 2013. Long-distance retrograde neurotrophic factor signaling in neurons. Nature Reviews Neuroscience 14(3): 177–187.
(6)
Yamaguchi, Y., and M. Miura. 2015. Programmed cell death in neurodevelopment. Developmental Cell 32 (4): 478–490.
(7)
Kandel, E. R., J. H. Schwartz, and T. M. Jessell. 1995. Essentials of Neural Science and Behavior. Appleton & Lange.
(8)
Webb, S. J., C. S. Monk, and C. A. Nelson. 2001. Mechanisms of postnatal neurobiological development: Implications for human development. Developmental Neuropsychology 19(2): 147–171.
(9)
Petanjek, Z., M. Judaš, G. Šimić, M. L. Rašin, H. B. M. Uylings, P. Rakic, and I. Kostović. 2011. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences 108(32): 13281–13286.
(10)
Selemon, L. D. 2013. A role for synaptic pruning in the adolescent development of executive function. Translational Psychiatry 3: e238.
(11)
Hubel, D. H. and T. N. Wiesel 1959. Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology 148(3): 574–591.
(12)
Hubel, D. H., and T. N. Wiesel. 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160(1): 106–154.
(13)
Hubel, D. H., and T. N. Wiesel. 1965. Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology 28(6): 1041–1059.
(14)
Wiesel, T. N., and D. H. Hubel. 1965. Extent of recovery from the effects of visual deprivation in kittens. Journal of Neurophysiology 28(6): 1060–1072.
(15)
Sugiyama, S., A. A. Di Nardo, S. Aizawa, I. Matsuo, M. Volovitch, A. Prochiantz, and T. K. Hensch. 2008. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134(3): 508–520.
(16)
Hensch, T. K. 2005. Critical period mechanisms in developing visual cortex. Current Topics in Developmental Biology 69: 215–237.
(17)
Southwell, D. G., R. C. Froemke, A. Alvarez-Buylla, M. P. Stryker, and S. P. Gandhi. 2010. Cortical plasticity induced by inhibitory neuron transplantation. Science 327(5969): 1145–1148.
(18)
Bardin, J. 2012. Unlocking the brain. Nature 487(7405): 24–26.

الفصل الرابع: مرونة المشابك العصبية

(1)
Kandel, E. R., J. H. Schwartz, and T. M. Jessell. 1995. Essentials of Neural Science and Behavior. Appleton & Lange.
(2)
Sheng, M., and E. Kim. 2011. The postsynaptic organization of synapses. Cold Spring Harbor Perspectives in Biology 3: a005678.
(3)
Südhof, T. C. 2013. A molecular machine for neurotransmitter release: Synaptotagmin and beyond. Nature Medicine 19(10): 1227–1231.
(4)
Kandel, E. R., J. H. Schwartz, and T. M. Jessell. 1995. Essentials of Neural Science and Behavior. Appleton & Lange.
(5)
Sheng, M., and E. Kim. 2011. The postsynaptic organization of synapses. Cold Spring Harbor Perspectives in Biology 3: a005678.
(6)
Rosenzweig, M. R. 1996. Aspects of the search for neural mechanisms of memory. Annual Review of Psychology 47: 1–32.
(7)
Bliss, T. V., and T. Lømo. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology 232(2): 331–356.
(8)
Kandel, E. R., J. H. Schwartz, and T. M. Jessell. 1995. Essentials of Neural Science and Behavior. Appleton & Lange.
(9)
Malenka, R. C. 2003. The long-term potential of LTP. Nature Reviews Neuroscience 4(11): 923–926.
(10)
Malinov, R., and R. C. Malenka. 2002. AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience 25: 103–126.
(11)
Sheng, M., and E. Kim. 2011. The postsynaptic organization of synapses. Cold Spring Harbor Perspectives in Biology 3: a005678.
(12)
Lüscher, C., and R. C. Malenka. 2011. Drug-evoked synaptic plasticity in addiction: From molecular changes to circuit remodeling. Neuron 69(4): 650–663.
(13)
Morris, R. G., E. Anderson, G. S. Lynch, and M. Baudry. 1986. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319(6056): 774–776.
(14)
Tonegawa, S., M. Pignatelli, D. S. Roy, and T. J. Ryan. 2015. Memory engram storage and retrieval. Current Opinion in Neurobiology 35: 101–109.
(15)
Yuste, R. 2015. The discovery of dendritic spines by Cajal. Frontiers in Neuroanatomy 9(18). DOI: 10.3389/fnana.2015.00018.
(16)
Sala, C., and M. Segal. 2014. Dendritic spines: The locus of structural and synaptic plasticity. Physiological Review 94(1): 141–188.
(17)
Lamprecht, R., and J. LeDoux. 2004. Structural plasticity and memory. Nature Reviews Neuroscience 5(1): 45–54.
(18)
Cichon, J., and W. B. Gan. 2006. Branch-specific dendritic spikes cause persistent synaptic plasticity. Nature 520(7546): 180–185.
(19)
Nimchinsky, E. A., B. L. Sabatini, and K. Svoboda. 2002. Structure and function of dendritic spines. Annual Review of Physiology 64: 313–353.
(20)
Allen, N. J. 2014. Synaptic plasticity: Astrocytes wrap it up. Current Biology 24(15): R697–699.
(21)
Tremblay, M.-È., B. Stevens, A. Sierra, H. Wake, A. Bessis, and A. Nimmerjahn. 2011. The role of microglia in the healthy brain. Journal of Neuroscience 31(45): 16064–16069.

الفصل الخامس: التخليق العصبي في البلوغ

(1)
Costandi, M. 2006. The discovery of the neuron. Neurophilosophy blog, 29 August, 2006. https://neurophilosophy.wordpress.com/2006/08/29/the-discovery-of-the-neuron/.
(2)
Gross, C. G. 2012. A Hole in the Head: More Tales in the History of Neuroscience. MIT Press.
(3)
Altman, J., and G. D. Das. 1965. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. Journal of Comparative Neurology 124(3): 319–336.
(4)
Kaplan, M. S. 1981. Neurogenesis in the 3-month-old rat visual cortex. Journal of Comparative Neurology 195(2): 323–338.
(5)
Costandi, M. 2012. Fantasy fix. New Scientist 213(2854): 38–41.
(6)
Ibid.
(7)
Nottebohm, F. 1981. A brain for all seasons: Cyclical anatomical changes in song control nuclei of the canary brain. Science 214(4527): 1368–1370.
(8)
Gould, E., and C. G. Gross. 2002. Neurogenesis in adult mammals: Some progress and problems. Journal of Neuroscience 22(3): 619–623.
(9)
Reynolds, B. A., and S. Weiss. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052): 1707–1710.
(10)
Costandi, M. 2012. Fantasy fix. New Scientist 213(2854): 38–41.
(11)
Braun, S. M., and S. Jessberger. 2014. Adult neurogenesis: Mechanisms and functional significance. Development 141(10): 1983–1986.
(12)
Gould, E., and C. G. Gross. 2002. Neurogenesis in adult mammals: Some progress and problems. Journal of Neuroscience 22(3): 619–623.
(13)
Eriksson, P. S., E. Perfilieva, T. Björk-Eriksson, A.-M. Alborn, C. Nordborg, D. A. Peterson, and F. H. Gage. 1998. Neurogenesis in the adult human hippocampus. Nature Medicine 4(11): 1313–1317.
(14)
Knoth, R., I. Singec, M. Ditter, G. Pattazis, P. Capetian, R. P. Meyer, V. Horvat, B. Volk, and G. Kempermann. 2010. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 5: e8809.
(15)
Sanai, N., A. D. Tramontin, A. Quiñones-Hinojosa, N. M. Barbaro, N. Gupta, S. Kunwar, M. T. Lawton, M. W. McDermott, A. T. Parsa, J. Manuel- García Verdugo, M. S. Berger, and A. Alvarez-Buylla. 2004. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427(6976): 740–744.
(16)
Sanai, N., T. Nguyen, R. A. Ihrie, Z. Mirzadeh, H.-H. Tsai, M. Wong, N. Gupta, M. S. Berger, E. Huang, J. Manuel-García Verdugo, D. H. Rowitch, and A. Alvarez-Buylla. 2011. Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478(7369): 382–386.
(17)
Spalding, K. L., O. Bergmann, K. Alkass, S. Bernard, M. Salehpour, H. B. Huttner, E. Boström, I. Westerlund, C. Vial, B. A. Buchholz, G. Possnert, D. C. Mash, H. Druid, and J. Frisén. 2013. Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6): 1219–1227.
(18)
Ernst, A., K. Alkass, S. Bernard, M. Salehpour, S. Perl, J. Tisdale, H. Druid, and J. Frisén. 2014. Neurogenesis in the striatum of the adult human brain. Cell 156(5): 1072–1083.
(19)
Hanson, N. D., M. J. Owens, and C. B. Nemeroff. 2011. Depression, antidepressants, and neurogenesis: A critical reappraisal. Neuropsychopharmacology 36(13): 2589–2602.
(20)
Ernst, A. and J. Frisén. 2015. Adult neurogenesis in humans: Common and unique traits in mammals. PLoS Biology 13(1): e1002045.
(21)
Vescovi, A. L., R. Galli, and B. A. Reynolds. 2006. Brain tumor stem cells. Nature Reviews Cancer 6(6): 425–436.
(22)
Costandi, M. 2012. Fantasy fix. New Scientist 213(2854): 38–41.
(23)
Casarosa, S., Y. Bozzi, and L. Conti. 2014. Neural stem cells: Ready for therapeutic applications? Molecular and Cellular Therapies 2: 31. DOI: 10.1186/2052-8426-2-31.

الفصل السادس: تدريب الدماغ

(1)
Owen, A. M., A. Hampshire, J. A. Grahn, R. Stenton, S. Dajani, A. S. Burns, R. J. Howard, and C. G. Ballard. 2010. Putting brain training to the test. Nature 465(7299): 775–778.
(2)
Max Planck Institute for Human Development and Stanford Center on Longevity. 2014. A Consensus on the Brain Training Industry from the Scientific Community. Accessed on 4 September, 2015, from http://longevity3.stanford.edu/blog/2014/10/15/the-consensus-on-the-brain-training-industry-from-the-scientific-community/.
(3)
Federal Trade Commission. 2016. Lumosity to pay $2 million to settle FTC deceptive advertising charges for its “brain training” program. Accessed on 23 February, 2016, from https://www.ftc.gov/news-events/press-releases/2016/01/lumosity-pay-2-million-settle-ftc-deceptive-advertising-charges/.
(4)
Münte, T. F., E. Altenmüller, and L. Jancke. 2002. The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience 3(6): 473–478.
(5)
Mechelli, A., J. T. Crinion, U. Noppeney, J. O’Doherty, J. Ashburner, R. S. Frackowiak, and C. J. Price. 2004. Structural plasticity in the bilingual brain. Nature 431(7010): 757.
(6)
Li, P., J. Legault, and K. A. Litcofsky. 2014. Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex 58: 301–24.
(7)
Costandi, M. 2014. Am I too old to learn a new language? The Guardian. http://www.theguardian.com/education/2014/sep/13/am-i-too-old-to-learn-a-language/.
(8)
Schlaug, G., L. Jäncke, Y. Huang, J. F. Staiger, and H. Steinmetz. 1995. Increased corpus callosum size in musicians. Neuropsychologia 33(8): 1047–1055.
(9)
Elbert, T., C. Pantev, C. Wienbruch, B. Rockstroh, and E. Taub. 1995. Increased cortical representation of the fingers of the left hand in string players. Science 270(5234): 305–307.
(10)
Gaser, C., and G. Schlaug. 2003. Brain structures differ between musicians and non-musicians. Journal of Neuroscience 23(27): 9240–9245.
(11)
Bengtsson, S. L., Z. Nagy, S. Skare, L. Forsman, H. Forssberg, and F. Ullén. 2005. Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience 8(9): 1148–1150.
(12)
Roberts, R. E., P. G. Bain, B. I. Day, and M. Husain. 2012. Individual differences in expert motor coordination associated with white matter microstructure in the cerebellum. Cerebral Cortex 23(10): 2282–2292.
(13)
Driemeyer, J., J. Boyke, C. Gaser, C. Büchel, and A. May. 2008. Changes in gray matter induced by learning—Revisited. PLoS ONE 3(7): e2669. DOI: 10.1371/journal.pone.0002669.
(14)
Scholz, J., M. C. Klein, T. E. J. Behrens, and H. Johansen-Berg. 2009. Training induces changes in white matter architecture. Nature Neuroscience 12(11): 1370-1371.
(15)
Maguire, E. A., D. G. Gadian, I. S. Johnsrude, C. D. Good, J. Ashburner, R. J. S. Frackowiak, and C. D. Frith. 2000. Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences 97(8): 4398–4403.
(16)
Woollett, K., and E. A. Maguire. 2011. Acquiring “the Knowledge” of London’s layout drives structural brain changes. Current Biology 21(24): 2109–2114.
(17)
Debarnot, U., M. Sperduti, F. Di Rienzo, and A. Guillot. 2014. Expert bodies, expert minds: How physical and mental training shape the brain. Frontiers in Human Neuroscience 8(280): DOI: 10.3389/fnhum.2014.00280.
(18)
Zatorre, R. J., R. D. Fields, and H. Johansen-Berg. 2012. Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nature Neuroscience 15(4): 528–536.
(19)
Naito, E., and S. Hirose. 2014. Efficient motor control by Neymar’s brain. Frontiers in Human Neuroscience 8. DOI: 10.3389/fnhum.2014.00594.

الفصل السابع: إصابة الأعصاب وتلف الدماغ

(1)
Buonomano, D. V., and M. M. Merzenich. 1998. Cortical plasticity: From synapses to maps. Annual Review of Neuroscience 21: 149–186.
(2)
Ramachandran, V. S., and D. Rogers-Ramachandran. 2000. Phantom limbs and neural plasticity. Archives of Neurology 57(3): 317–320.
(3)
Navarro, X., M. Vivó, and A. Valero-Cabré. 2007. Neural plasticity after peripheral nerve injury and regeneration. Progress in Neurobiology 82(4): 163–201.
(4)
Pascual-Leone, A., A. Amedi, F. Fregni, and L. B. Merabet. 2005. The plastic human brain cortex. Annual Review of Neuroscience 28: 377–401.
(5)
Schaechter, J. D., C. I. Moore, B. D. Connell, B. R. Rosen, and R. M. Dijkhuizen. 2006. Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain 129(10): 2722–2733.
(6)
Costandi, M. 2014. Machine recovery. Nature 510(7506): S8-S9.
(7)
Pascual-Leone, A., A. Amedi, F. Fregni, and L. B. Merabet. 2005. The plastic human brain cortex. Annual Review of Neuroscience 28: 377–401.
(8)
Ibid.
(9)
Rohan, J. G., K. A. Carhuatanta, S. M. McInturf, M. K. Miklasevich, and R. Jankord. 2015. Modulating hippocampal plasticity with in vivo brain stimulation. Journal of Neuroscience 35(37): 12824–12832.
(10)
Pilato, F., P. Profice, L. Florio, R. Di Iorio, F. Iodice, D. Marisa, and D. L. Vincenzo. 2013. Non-invasive brain stimulation techniques may improve language recovery in stroke patients modulating neural plasticity. Journal of Neurology and Translational Neuroscience 1: 1012.
(11)
Ward, N. 2011. Assessment of cortical reorganisation for hand function after stroke. Journal of Physiology 589(23): 5625–5632.
(12)
Shah, P. P., J. P. Szaflarski, J. Allendorfer, and R. H. Hamilton. 2013. Induction of neuroplasticity and recovery in post-stroke aphasia by non-invasive brain stimulation. Frontiers in Human Neuroscience 7. DOI: 10.3389/fnhum.2013.00888.
(13)
Chollet, F., J. Tardy, J.-F. Albucher, C. Thalamas, E. Berard, C. Lamy, Y. Bejot, S. Deltour, A. Jaillard, P. Niclot, B. Guillon, T. Moulin, P. Marque, J. Pariente, C. Arnaud, and I. Loubinoux, (2011). Fluoxetine for motor recovery after acute ischemic stroke (FLAME): A randomized placebo-controlled trial. The Lancet Neurology 10(2): 123–130.

الفصل الثامن: الإدمان والألم

(1)
Koob, G. F., and N. D. Volkow. 2010. Neurocircuitry of addiction. Neuropsychopharmacology Reviews 35(1): 217–238.
(2)
Ibid.
(3)
Lüscher, C., and R. C. Malenka. 2012. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harbor Perspectives in Biology 4: a005710.
(4)
O’Brien, C. P. 2009. Neuroplasticity in addictive disorders. Dialogues in Clinical Neuroscience 11(3): 350–353.
(5)
Dodd, M. L., K. J. Klos, J. H. Bower, Y. E. Geda, K. A. Josephs, and J. E. Ahlskog. 2005. Pathological gambling caused by drugs used to treat Parkinson’s disease. Archives of Neurology 62(9): 1377–1381.
(6)
Lumpkin, E. A., and M. J. Caterina. 2007. Mechanisms of sensory transduction in the skin. Nature 445(7130): 858–865.
(7)
Woolf, C. J., and M. W. Salter 2000. Neuronal plasticity: Increasing the gain in pain. Science 288(5472): 1765–1768.
(8)
Luo, C., T. Kuner, and R. Kuner. 2014. Synaptic plasticity in pathological pain. Trends in Neurosciences 37(6): 343–355.
(9)
Gustin, S. M., C. C. Peck, L. B. Cheney, P. M. Macey, G. M. Murray, and L. A. Henderson. 2012. Pain and plasticity: Is chronic pain always associated with somatosensory cortex activity and reorganization? Journal of Neuroscience 32(43): 14874–14884.

الفصل التاسع: التغيرات الدماغية المستمرة مدى الحياة

(1)
Anderson, A., and M. E. Thomason. 2013. Functional plasticity before the cradle: A review of neural functional imaging in the human fetus. Neuroscience and Biobehavioral Reviews 37(9B): 2220–2232.
(2)
Sweatt, J. D. 2013. The emerging field of neuroepigenetics. Neuron 80(3): 624–632.
(3)
Weaver, I. C. G., N. Cervoni, F. A. Champagne, A. C. D’Alessio, S. Sharma, J. R. Seckl, S. Dymov, M. Szyf, and M. M. Meaney 2004. Epigenetic programming by maternal behavior. Nature Neuroscience 7(8): 847–854.
(4)
McGowan, P. O., A. Sasaki, A. C. D’Alessio, S. Dymov, B. Labonté, M. Szyf, G. Turecki, and M. J. Meaney. 2009. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience 12(3): 342–348.
(5)
Brito, N. H., and K. G. Noble. 2014. Socioeconomic status and structural brain development. Frontiers in Neuroscience 8: 276.
(6)
Davidson, R. J., and B. S. McEwan. 2011. Social influences on neuroplasticity: Stress and interventions to promote well-being. Nature Neuroscience 15(5): 689–695.
(7)
Blakemore, S.-J. 2012. Imaging brain development: The adolescent brain. NeuroImage 61(2): 397–406.
(8)
Elyada, Y. M., and A. Mizrahi. 2015. Becoming a mother: Circuit plasticity underlying maternal behavior. Current Opinion in Neurobiology 35: 49–56.
(9)
Kim, P., J. F. Leckman, L. C. Mayes, R. Feldman, X. Wang, and J. E. Swain. 2010. The plasticity of human maternal brain: Longitudinal changes in brain anatomy during the early postpartum period. Behavioral Neuroscience 124(5): 695–700.
(10)
McEwan, A. M., D. T. A. Burgess, C. C. Hanstock, P. Seres, P. Khalili, S. C. Newman, G. B. Baker, N. D. Mitchell, J. Khudabux-Der, P. S. Allen, and J.-M. LeMelledo. 2012. Increased glutamate levels in the medial prefrontal cortex in patients with postpartum depression. Neuropsychopharmacology 37(11): 2428–2435.
(11)
Kim, P., P. Rigo, L. C. Mayes, R. Feldman, J. F. Leckman, and J. E. Swain. 2014. Neural plasticity in fathers of human infants. Social Neuroscience 9(5): 522–535.
(12)
Burke, S. N., and C. A. Barnes. 2006. Neural plasticity in the aging brain. Nature Reviews Neuroscience 7(1): 30–40.
(13)
Grady, C. 2012. Trends in neurocognitive aging. Nature Reviews Neuroscience 13(7): 491–505.
(14)
Rogalski, E. J., T. Gefen, J. Shi, M. Samimi, E. Bigio, S. Weintraub, C. Geula, and M. M. Mesulam. 2013. Youthful memory capacity in old brains: Anatomic and genetic clues from the Northwestern SuperAging Project. Journal of Cognitive Neuroscience 25(1): 29–36.
(15)
Abutalebi, J., M. Canini, P. A. Della Rosa, L. P. Sheung, D. W. Green, and B. S. Weekes. 2014. Bilingualism protects anterior temporal lobes integrity in aging. Neurobiology of Aging 35(9): 2126–2133.
(16)
Costandi, M. 2014. Am I too old to learn a new language? The Guardian. http://www.theguardian.com/education/2014/sep/13/am-i-too-old-to-learn-a-language/.
(17)
Wong, C., L. Chaddock-Heyman, M. W. Voss, A. Z. Burzynska, C. Basak, K. I. Erickson, R. S. Prakash, A. N. Szabo-Reed, S. M. Phillips, T. Wojcicki, E. L. Mailey, E. McAuley, and A. F. Kramer. 2015. Brain activation during dualtask processing is associated with cardiorespiratory fitness and performance in older adults. Frontiers in Aging Neuroscience 12(7): 154. DOI: 10.3389/fnagi.2015.00154.

الفصل العاشر: خاتمة

(1)
Steele, C. J., J. A. Bailey, R. J. Zatoore, and V. B. Penhune. 2013. Early musical training and white matter plasticity: Evidence for a sensitive period. Journal of Neuroscience 33(3): 1282–1290.
(2)
Kandel, E. R., J. H. Schwartz, and T. M. Jessell. 1995. Essentials of Neural Science and Behavior. Appleton & Lange.
(3)
McKenzie, I. A., D. Ohayon, H. Li, J. P. de Faria, B. Emery, K. Tohyama, and W. D. Richardson. 2014. Motor skill learning requires active central myelination. Science 346(6207): 318–322.
(4)
Mensch, S., M. Baraban, R. Almeida, T. Czopka, J. Ausborn, A. El Manira, and D. A. Lyons. 2015. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nature Neuroscience 18: 628–630.
(5)
Wake, H., F. C. Ortiz, D. H. Woo, P. R. Lee, M. C. Angulo, and R. D. Fields. 2013. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nature Communications 4: 7844.
(6)
Spitzer, N. C. 2015. Neurotransmitter switching? No surprise. Neuron 86(5): 1131–1144.
(7)
Dehorter, N., G. Ciceri, G. Bartolini, L. Lim, I. del Pino, and O. Marín. 2015. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science 349(6253): 1216–1220.
(8)
Shaw, C. A., and J. A. McEachern (eds.). 2001. Toward a Theory of Neuroplasticity. Psychology Press.
(9)
Sporns, O. 2012. Discovering the Human Connectome. MIT Press.
(10)
Huber, E., J. M. Webster, A. A. Brewer, D. I. A. MacLeod, B. A. Wandell, G. M. Boynton, A. R. Wade, and I. Fine. 2015. A lack of experience-dependent plasticity after more than a decade of recovered sight. Psychological Science 26(4): 393–401.

جميع الحقوق محفوظة لمؤسسة هنداوي © ٢٠٢٤