فراغ هيجز
أطوار وتنظيم
تناولنا في الفصل السادس باختصار فكرة التنظيم، التي بموجبها يمكن لعدد كبير من الذرات والجزيئات أن تتمتع بخصائص يستحيل أن تتمتع بها منفردة. ولمَّا كان الفراغ الكمي يمتلئ بالجسيمات، يمكنه أيضًا أن يتمتع بخصائص غير متوقعة اعتمادًا على تنظيم مكوناته. وهناك أمثلة كثيرة مألوفة على التنظيم، ولأن هذه الأمثلة هي التي أوحت بالأفكار الحديثة حول طبيعة الفراغ، سأستهل هذا الفصل بوصف بعضها.
يقال إن بزوغ ظاهرة جديدة يحدث حين تنشأ هذه الظاهرة الفيزيائية نتيجة تنظيم أي أجزاء على نحو معين، في حين أن نفس الظاهرة لا تظهر حين تكون الأجزاء منفصلة كلٌّ على حدة. في فن الرسم مثلًا تُرسم بقع الألوان المنفردة وتُلون عشوائيًّا في لوحة زيتية انطباعية لمونيه أو رينوار، ومع ذلك عندما تنظر إليها عن بعد تصير اللوحة بأكملها منظمة في صورة رائعة لحقل من الأزهار. إن قصور ضربات الفرشاة الفردية هو ما يثبت أن ظهور اللوحة على هذا الشكل هو نتيجة لتنظيمها. وبالمثل، يمكن أن تشكل «حركات الفرشاة» الفردية الذرية تنظيمًا متكاملًا قادرًا على فعل أشياء لا تستطيع الذرات المنفردة، ولا حتى مجموعات صغيرة منها، أن تفعلها. هكذا يطابق البروتون أو الإلكترون الواحد بروتونًا أو إلكترونًا آخر، وكل ما في وسعهما فعله وحدهما هو أن يجذب أحدهما الآخر عن طريق التجاذب الكهربائي لتكوين الذرات، وتمكن الكهرباء الموجودة داخل الذرات مجموعات الذرات من الانضمام بعضها لبعض مكونة الجزيئات، وعندما يتجمع عدد كافٍ منها يمكن أن يصير كائنًا واعيًا؛ مثلك تمامًا وأنت تقرأ هذا الكتاب.
هناك معادن معينة يمكنها أن تطرد المجالات المغناطيسية عندما تُبرد إلى درجات حرارة شديدة الانخفاض، فينتج ما يُعرف بالموصلية الفائقة، ومع ذلك ليس بمقدور الذرات المنفردة التي تكوِّن المعدن أن تفعل هذا. وثمة مثل على ذلك من الحياة اليومية هو نشوء المواد الصلبة والسائلة والغازية من مجموعات كبيرة من الجزيئات، كالماء على شكل سائل وجليد وبخار. إننا نثق ثقة عمياء في أن أرضية الطائرة التي تحلق بنا على ارتفاع ١٠ آلاف متر لن تفقد صلابتها فجأة وتلقي بنا إلى السُّحُب تحتها. وبالمثل، يثق شعب الإسكيمو في صلابة الكتل الجليدية الصلبة تحت أرجلهم، مع أن أي ارتفاع طفيف في درجة الحرارة يمكن أن يذيبها، تاركًا إياهم هائمين في البحر.
إننا نعهد بأماننا إلى تنظيم الجزيئات المنفردة، حتى على الجليد السميك. وفي المواد الصلبة الكريستالية يكون تنظيمها على شكل شبكة هو ما يمنحها الصلابة وكذا الجمال الأخاذ؛ إذ يمكن لذرات الكربون أن تنظم نفسها لتأخذ شكل الماس، أو السخام. وفي المادة الصلبة نجد الذرات المنفردة ثابتة في مكانها قريبة بعضها من بعض، لكن قد تتسبب الحرارة في اهتزازها قليلًا، بحيث تتزحزح قليلًا عن المكان المخصص لها. لكن بفضل تلاحمها بالذرات المجاورة فإن الأخطاء الوضعية لا تتراكم، ويمكن أن يحتفظ التكوين ككل بكمال وصلابة ظاهرين. أما في الطور السائل، فيكون الاهتزاز من الشدة بحيث تفقد الذرات تنظيمها وتنساب.
في بعض المواد يحدث التغير فجأة؛ فالانتقال فوق درجة الصفر المئوي أو أدناها بكسر عشري واحد قد يحدث الفارق بين تجمد الجليد وذوبانه. ولا يحدث هذا أي فارق مع مواد أخرى كالزجاج، إذ لا توجد طريقة ذات مغزى لمعرفة هل هو صلب أم سائل شديد اللزوجة. يكون الهيليوم في صورة غازية في درجة حرارة الغرفة، وسائلة عند التبريد، لكن مهما قللت درجة الحرارة فإنه لا يتجمد قط. لكن إذا عرضت الهيليوم للضغط فسوف يتبلر.
توضح هذه الأمثلة أطوارًا مختلفة تمر بها المواد اعتمادًا على الطريقة التي تنظم بها الجسيمات نفسها. يمكن أن تحدث نتائج شائقة حين تعيد المجموعات تنظيم نفسها مع انتقالها من أحد الأطوار إلى طور آخر، كما هو الحال مع الماء والجليد عند درجة الصفر المئوي.
عند أي درجة حرارة تعد الحالة المنظمة ذات القدر الأدنى من الطاقة هي الأكثر استقرارًا، ويكون لها الأولوية عند تحديد الطور المفضل. ودرجة حرارة الوسط وسيلة لقياس طاقته، لا سيما تلك الحرارة الناجمة عن طاقة الحركة لمكوناته. وكلما ارتفعت درجة الحرارة زادت الحركة العشوائية. تحت درجة الصفر المئوي، تميل جزيئات الماء إلى التشبث بعضها ببعض، ويؤلف تداخلها الذري أشكالًا من التنظيمات البلورية، فتتكون الأنماط السداسية المتشابهة الشائعة في ندف الصقيع المتكونة على الألواح الزجاجية في الشتاء. تكون حركة الجزيئات عند درجات الحرارة هذه محدودة للغاية، حتى إن التصادم بينها لا يولد الطاقة الكافية لتمزيق الروابط التي تجمعها معًا. غير أنه فوق درجة حرارة الصفر المئوي ترتفع الطاقة ويشتد العنف الناجم عن التصادمات فلا تستطيع بلورات الجليد أن تظل مترابطة. فعند إضافة أي قطعة من الثلج إلى مشروبك السائل الذي تزيد درجة حرارته عن الصفر المئوي، فإن جزيئات الثلج تصطدم بعنف بجزيئات السائل الدافئ، وهكذا تتفسخ الجزيئات بعضها عن بعض وتتدفق في صورة سائلة هي الأخرى.
عند درجة حرارة الصفر المئوي يتحول خليط السائل والثلج إلى ثلج، لأنه في هذا الطور تتمتع الجزيئات بطاقة أقل عن تلك التي تتمتع بها في الطور السائل. وبينما تتحول إلى الحالة الصلبة، تنطلق الطاقة الزائدة على صورة حرارة (فيما يُعرف باسم الحرارة الكامنة). لا يكون مقدار الطاقة هذا هائلًا، لكن يمكننا أن نجري تجربة فكرية لتخيل ما سيحدث إذا كان مقدار الطاقة أعظم وأكبر حتى من الطاقة اللازمة لتكوين جزيئات من الجليد والجليد «المضاد». لو سارت الأمور في الطبيعة على هذه الصورة، لظهرت ندف الجليد وندف الجليد المضاد تلقائيًّا من العدم عندما تهبط درجات الحرارة إلى الصفر المئوي.
في تلك الأثناء، يحدث لغز مثير. ففوق درجة الصفر المئوي تبدو الحالة القاعية لجزيئات الماء متماثلة أينما نظرت. ونصف الجزئيات هنا بأنها متناظرة تحت التدوير. لكن ندفة الجليد ليست كذلك؛ فهي تتمتع بشكل بديع، ولها تناظر سداسي، بمعنى أنك إذا أدرتها بزاوية ٦٠ درجة فسترى نفس ما تراه، أما إذا أدرتها بأي زاوية أخرى فسترى ندفة جليدية مدارة. قد يشير أحد أطرافها في اتجاه الساعة الثانية عشرة مثلًا، وفي هذه الحالة يتعين على بقية الأطراف أن تشير إلى الساعة الثانية والرابعة والسادسة والثامنة والعاشرة، أو قد يشير الطرف إلى الساعة الواحدة وهنا ستشير بقية الأطراف إلى الأرقام الفردية على الساعة. وبينما تتكون مليارات الندف الجليدية، تكون اتجاهاتها عشوائية حتى إن الشكل الإجمالي للحالة القاعية الجديدة لها، والممتلئة الآن بالندف الجليدية، يبدو متماثلًا من جميع الاتجاهات. غير أنه من نقطة إلى أخرى ينكسر التناظر؛ فقد يشير طرف ندفة إلى اتجاه ما وتشير جارتها إلى اتجاه مخالف.
مثال آخر ذو أهمية كبيرة في فهمنا للفراغ هو ظاهرة المغناطيسية، التي تنتج عن دوران الإلكترونات حول نفسها، بحيث يقوم كل إلكترون بدور مغناطيس صغير. في الحديد تفضل الإلكترونات المتجاورة الدوران في الاتجاه عينه بعضها مثل بعض لأن هذا يقلل طاقتها؛ فلكي تقلل طاقة حشد الإلكترونات بأكمله، لا بد أن تدور جميعها في الاتجاه عينه، وهو ما ينتج عنه وجود محور مغناطيسي شمالي-جنوبي إجمالي للمعدن. هذه هي حالة الطاقة الدنيا، أو الحالة القاعية. غير أنه فوق درجة الحرارة ٩٠٠ مئوية تكون الطاقة الإضافية التي تنتج عن الحرارة أكثر من كافية لتحرير كل إلكترون دوار من ارتباطه بجيرانه، وفي مثل هذه الحالة تشير هذه المغناطيسات الصغيرة في اتجاهات عشوائية وتتلاشى الخاصية المغناطيسية الإجمالية لها. وهكذا يمكن أن يمر الحديد بطور من المغناطيسية أو طور من عدم المغناطيسية، اعتمادًا على درجة الحرارة.
هكذا يكون لدينا الآن منظور جديد للسؤال الذي طرحه الفلاسفة القدماء هل الطبيعة تسمح بوجود فراغ. تعتمد الإجابة على وجهة نظرنا، سواء كانت «لا» (بمعنى أن الفراغ مليء بالفعل ببحر لانهائي من الجسيمات بالإضافة إلى التذبذبات الكمية) أو «نعم، هناك أنواع عديدة مختلفة من الفراغ» (أي اعتمادًا على الكيفية التي يُنظَّم بها الوسط، الذي هو الفراغ الكمي). تميل المعرفة السائدة في الفيزياء إلى كفة الإجابة بنعم. وسنعرف المزيد عن هذا بعدما نرى كيف أن الأنماط والشكل يمكن أن تظهر مع انتقال الفراغ الكمي من حالة منظمة إلى أخرى.
التحولات الطورية والفراغ
لا تظهر العديد من الأنظمة الفيزيائية التناظرات الأساسية للقوى التي تبينها؛ فالقوى الكهرومغناطيسية لا تبالي بما إذا كان اتجاه القوة ناحية اليسار أو اليمين، غير أن الجزيئات البيولوجية سواء على صورة طعام أو مواد مفيدة يكون لها صور معاكسة طبق الأصل قد تكون جامدة أو حتى قاتلة.
وازن قلم رصاص أسطواني الشكل مثالي التصميم على طرفه. لف القلم: سيبدو شكل القلم واحدًا دون اختلاف. يُعرف عدم التغير الحادث مع الدوران بالتناظر، وفي هذه الحالة بالتناظر الدوراني. ولمَّا كان القلم واقفًا على طرفه، فاستقراره مؤقت لأن قوة الجاذبية ستجذبه إلى الأرض إذا تزحزح من الوضع العمودي بأقل مقدار. قوة الجاذبية متناظرة دورانيًّا، وهو ما يعني أنه عندما يسقط القلم إلى الأرض، ما من تفضيل لاتجاه على الآخر. كرر التجربة آلاف المرات وستجد أن القلم سيسقط في جميع نقاط المحيط، وهو ما يتوافق مع التناظر الدوراني. بيد أنك لا تستطيع أن تجزم بناء على أي تجربة فردية في أي اتجاه سيسقط القلم؛ فبعد أن يسقط، في اتجاه الشمال مثلًا، ستكون «الحالة القاعية» قد كسرت التناظر الدوراني. لعبة الروليت هي مثال آخر على ذلك. العب لفترة طويلة للغاية ولسوف تجد أن احتمالات فوز جميع الأرقام متساوية، وهذا يضمن أن الكازينو سيكسب لأن استقرار الكرة على أي رقم غير الذي اخترته يعني خسارتك. لكن في أي دور تلعبه، يكون مصدر المقامرة هو عجزك عن التنبؤ على نحو مؤكد بالرقم الذي ستستقر عليه الكرة.
في مثال القلم، فإن الحالة التي يكون التناظر فيها مكسورًا تكون أكثر ثباتًا من حالة التناظر، التي يحتفظ فيها القلم بتوازنه على سنه على نحو متقلقل. بصفة عامة، للقوانين التي تحكم أي نظام قدر من التناظر، لكن إذا وجدت حالة أكثر ثباتًا تفسد هذا التناظر، فإن التناظر «ينكسر على نحو تلقائي»، أو يكون «مستترًا». وقد كان هذا هو الحال مع ندفة الجليد والماء ومغناطيسية الحديد.
قد تقول إن هذا غير صحيح، مؤكدًا على أن هذا ليس خطأ التناظر، بل يرجع أكثر لعدم دقة المرء في موازنة القلم: «فقد سقط القلم لأنه لم يكن منتصبًا على نحو تام». وهذا حقيقي، لكن افترض أنه كان متوازنًا في نقطة مصممة تصميمًا مثاليًّا. حتى عندئذ ستكون ذرات سن القلم في حالة حركة عشوائية بسبب درجة الحرارة، تلك الحرارة الآتية من طاقتها الحركية. تعني هذه العشوائية أن اتجاه السقوط عشوائي. قد تتفق معي في هذا لكن قد تقترح أن نجري التجربة عند درجات حرارة تقترب من الصفر المطلق، −٢٧٣ مئوية، حيث تشارف طاقة الحركة على الزوال. تفترض تجربتك الفكرية أن سن القلم مصنوع من جزيئات كروية تامة الاستدارة، وأن الجزيء المركزي تجمد في مكانه عند درجة حرارة الصفر المطلق حيث توقفت الحركة الحرارية. وهنا تتدخل قوانين الكم لتفسد هذه الصورة. فإذا تلاشت الحركة يصير الموضع غير معروف، وتكون نقطة التوازن نفسها عشوائية. وإذا عُرف موضع النقطة على وجه الدقة في لحظة ما، لصارت الحركة غير محددة، ولصار عدم التوازن الناتج غير متوقع. يبدو في هذه الحالة، وبصفة عامة، أن نسيج الطبيعة الكمي يسمح لحالة عدم الاستقرار عالية الطاقة أن تختار حالة الطاقة الدنيا التي ينكسر فيها التناظر تلقائيًّا. ولهذا يتسبب ذوبان الجليد، أو تسخين المعدن الممغنط، في عودة التناظر مجددًا، لكن حين يُسمح له بالبرودة ثانية، ينكسر التناظر دون تذكر لما كان عليه الوضع قبل ذلك.
تقضي القاعدة بأن رفع درجة الحرارة يتسبب في محو البنية والتعقيد مؤديًا إلى وجود نظام «أبسط». فالماء بسيط، أما بلورات الجليد فجميلة الشكل.
هنا سأعود مجددًا إلى المعضلة التي بدأنا بها. لو أن انكسار التناظر التلقائي قد تسبب في إيجاد ضوابط وقوى مختلفة، ما كنا لنوجد من الأساس بحيث نعرف هذا. وهذا يثير فكرة متطرفة تقضي أنه من الممكن أن توجد فراغات عدة، وأكوان متعددة، وأن كوننا تصادف وحسب أنه الكون الذي اتخذت فيه الأرقام قيمًا مناسبة.
من الأمثلة الملائمة هنا قطعة الحديد الممغنطة: سخنها، بحيث تدمر المغناطيسية، ثم بردها ثانية. في أحد أجزاء القطعة تشير المغناطيسات الذرية المتجمدة في اتجاه ما، وفي أجزاء أخرى تشير في اتجاه آخر. تعرف هذه الظاهرة باسم «النطاقات المغناطيسية». هل يمكن أن يكون هذا نموذجًا للكون؟ وضع المنظرون نماذج حسابية للانفجار العظيم تعين عليها أن تتفق مع ما نعرفه، نماذج تظهر تناظرًا «حقيقيًّا» في تلك الفترة الحارة المبكرة من عمر الكون. ويبدو أن السمة العامة هي أن هذه النماذج تقضي بأنه حين برد الكون بعد مرحلته الأولى المتناظرة، كان هناك «مشهد عام» من الحلول الممكنة. حين تنظر في المشهد العام، سترى أنه يوجد إجمالًا تناظر مبدئي: فشأن اتجاهات القلم الساقط نحو جميع النقاط على البوصلة، ثمة كتل وقوى من كل المقادير الممكنة، التي تتوافق مع التناظر الأصلي. وما قد يكون صحيحًا في هذا الجزء من الكون، وعلى امتداد ملايين السنوات الضوئية التي نستطيع رصدها، قد يكون مختلفًا في مكان آخر.
القوى المتغيرة في الفراغ
يتسبب فوران الفراغ في إرباك الإلكترونات المارة بالجوار ومن ثم القوى التي يمارسها كل جسيم مشحون على الجسيم المجاور له. ومع أن قانون التربيع العكسي للقوة الكهروستاتيكية هو القانون الطبيعي للمجالات الكهربية التي تنتشر على نحو متساوٍ عبر الفضاء ثلاثي الأبعاد، فإن البيانات الدقيقة تبين وجود انحرافات طفيفة عن هذا. فعند التحرك بسرعة تساوي واحدًا على المائة من سرعة الضوء، تكون تأثيرات الجاذبية قابلة للقياس. إن تمدد وتداخل الفضاء والزمان يشوه سلوك التربيع العكسي معطيًا تأثيرات طفيفة إضافية تنمو على نحو أسرع من التربيع العكسي حين تقترب شحنتان إحداهما من الأخرى. ومثل المغناطيسية، هذه هي التجسيدات المباشرة للنسبية. وحين تقترب شحنتان إحداهما من الأخرى أكثر من ذلك، بحيث تفصلهما مسافة أصغر من طول الذرة، يتسبب الفراغ الكمي في تشويه هاتين القوتين أكثر وأكثر.
كما ذكرت من قبل، تنتقل القوى بواسطة جسيمات تحمل الطاقة والزخم من جسم إلى آخر. في حالة القوة الكهرومغناطيسية فإن تبادل الفوتونات هو ما يؤدي هذه المهمة. فإذا انتقلت الفوتونات مباشرة من جسيم مشحون إلى آخر دون إعاقة، ينطبق قانون التربيع العكسي، أما إذا أعيق انتقال الفوتون بواسطة الفراغ الكمي، على غرار ذلك الذي يتذبذب إلى إلكترون وبوزيترون افتراضيين على الطريق، تتغير شدة القوة على نحو طفيف.
ومن ثم، تعمل الشحنتان الموجبة والسالبة للإلكترون والبوزيترون الافتراضيين بمنزلة غطاء حول الشحنة الصافية التي أحدثت القوة. تبين القياسات التي جرى التوصل إليها في مختبر سيرن أنه إذا اقتربت شحنتان حتى مسافة تصل إلى واحد على المائة مليون من قطر ذرة الهيدروجين، أي أصغر بألف مرة من حجم نواتها، فإن القوة الكهرومغناطيسية ستبدو أقوى مما هي عليه بنحو ١٠ بالمائة. وتشير الحسابات إلى أن القوة ستزداد أكثر من هذا في ظل المسافات الأقل، مع أنه ليس بالإمكان اختبار هذا تجريبيًّا بعد. وتقضي الأفكار الحديثة بأن الشدة «الحقيقية» للقوة الكهرومغناطيسية قد تكون أقوى بثلاث مرات مما يمكننا رصده من واقع القياسات على المستوى الأكبر. وحين تتسبب القوة الكهروستاتيكية في جعل مشط الشعر يجذب قطعة من الورق على مسافة ملليمترات قليلة، أو حتى حين يأسر البروتون إلكترونًا على طول الذرة، فإن القوة قد ضعفت بفعل شحنات المجالات الافتراضية الكامنة في الفراغ المتداخل. فقط على أدق المسافات، حيث تستطيع التذبذبات المتفردة وحدها أن تتدخل، يمكن الكشف عن الوجه الحقيقي للقوة المغناطيسية.
فراغ هيجز
تعتمد ظاهرة الموصلية الفائقة على وجود مجالات للمادة ذات سمات خاصة. في الموصل الفائق الحقيقي، ينشأ طرد المجال المغناطيسي كنتيجة لعمل الإلكترونات الموجودة داخل المادة بتعاون، منتجة ما يعرف باسم «تيارات الحجب». في حالة القوة الضعيفة يتطلب التشبيه وجود نوع من مجالات المادة «داخل الفراغ». وهذا مختلف تمامًا عما قابلناه إلى الآن. فإلى الآن نظرنا إلى الفراغ الكمي بوصفه مليئًا بالمجالات الافتراضية والتذبذبات المقاربة قيمتها للصفر التي لا يمكنها التجسد إلا إذا توفر لها المزيد من الطاقة. لكن الآن، مع «مجال هيجز»، نحن نتفكر في شيء له وجود حقيقي في الفراغ؛ فالفراغ «الخاوي» الذي ليس به أي مجال هيجز سيكون به من الطاقة «أكثر» مما به لو أن مجال هيجز موجود به. وبعبارة أخرى: أضف مجال هيجز إلى الفراغ وستقل الطاقة الإجمالية.
لهذه النتيجة المفاجئة شبيه في المواد الصلبة، على غرار المغناطيس، كما رأينا في جزء سابق من هذا الفصل. ففوق درجة حرارة معينة، تعرف باسم «درجة حرارة كوري»، يتمتع المعدن بطاقة أقل مما يتمتع به وهو ممغنط، لكن حين يُبرَّد إلى ما دون درجة حرارة كوري، يصير المعدن مغناطيسًا. وهكذا في درجة حرارة منخفضة بما يكفي، تعمل «إضافة» المغناطيسية على تقليل طاقة الحالة القاعية، أو «الفراغ».
مجال هيجز عجيب بحق. فالجسيمات، كالإلكترونات، التي تتحرك بسرعة تقل عن سرعة الضوء إنما تفعل هذا لأن لها كتلة؛ كتلة اكتسبتها نتيجة تفاعلها مع مجال هيجز الموجود في كل مكان. ومع هذا فهي تواصل الحركة دون مقاومة؛ فقوانين نيوتن تعمل، وتواصل الجسيمات التحرك بسرعة ثابتة ما لم تؤثر عليها قوة خارجية. يمكن حل غموض هذه المعضلة بشكل جزئي إذا أدركنا أن طاقة الجسيم هي التي تحدد سرعته، وبما أن مجال هيجز هو حالة الفراغ ذات الطاقة الأقل، فلا يمكن نقل أي طاقة من مجال هيجز أو إليه، ومن ثم تحافظ الجسيمات على سرعتها. ليس من الممكن تحديد قيمة مطلقة للسرعة نسبة إلى مجال هيجز. باللغة الاصطلاحية: «فراغ هيجز هو فراغ نسبي».