ملاحظات
الفصل الأول: مقدمة تاريخية
(1)
D. P. McCabe and A. D. Castel.
“Seeing Is Believing: The Effect of Brain Images on
Judgments of Scientific Reasoning,” Cognition 107 (2008):
343–352; D. S. Weisberg, F. C. Keil, J. Goodstein, E.
Rawson, and J. R. Gray, “The Seductive Allure of
Neuroscience Explanations,” Journal of Cognitive Neuroscience 20
(2008): 470–477; P. Legrenzi and C. Umiltà, Neuromania: On the Limits of Brain
Science (New York: Oxford University
Press, 2011).
(2)
W. J. M. Levelt, A History of Psycholinguistics: The
Pre-Chomskyan Era (New York: Oxford
University Press, 2012); P. Eling, “Neurolinguistics,
History of,” in International
Encyclopedia of the Social and Behavioral
Sciences, 2nd ed., ed. James Wright, 16:
678–689 (Amsterdam: Elsevier, 2015); G. -J. Rutten,
The Broca-Wernicke
Doctrine: A Historical and Clinical Perspective on
Localization of Language Functions
(Berlin: Springer, 2017).
(3)
Eling, “Neurolinguistics, History
of,” 680-681.
(4)
Eling, “Neurolinguistics, History
of,” 681.
(5)
Levelt, A
History of Psycholinguistics, 53-58;
Eling, “Neurolinguistics, History of,” 682; Rutten,
The Broca-Wernicke
Doctrine, 3-4.
(6)
F. J. Gall, Sur les Fonctions du Cerveau et sur
Celles de Chacune de ses Parties
(Ballière, 1822–1825).
(7)
Levelt, A
History of Psycholinguistics,
56–59.
(8)
P. Broca, “Remarques sur le Siège
de la Facultè du Langage Articulè, Suivies d’une
Observation d’aphémie (Perte de la Parole),”
Bulletin et Mémoires de
la Société Anatomique de Paris 6
(1861b): 330–357.
(9)
P. Broca, “Perte de la Parole,
Ramollissement Chronique et Destruction Partielle
du Lobe Antérieur Gauche du Cerveau,” Bulletin de la Societe
Anthropologique de Paris 2 (1861a):
235-238; Broca, “Remarques sur le Siège de la
Faculté du Langage Articulé”; P. Broca, “Nouvelle
Observation d’aphémie Produite par une Lesion de la
Moitié Postérieure des Deuxième et Troisième
Circonvolutions Frontales,” Bulletin et Memoires de la Societe Anatomique de
Paris 6 (1861c):
398–407.
(10)
Broca, “Nouvelle observation
d’aphémie produite.”
(11)
Levelt, A
History of Psycholinguistics,
88.
(12)
Broca, “Perte de la
Parole.”
(13)
C. Wernicke, C. (1874). “Der
Aphasische Symptomencomplex: Eine Psychologische
Studie auf Anatomischer Basis,” in Wernicke’s Works on Aphasia: A
Sourcebook and Review, ed. G. H.
Eggert, 91–145 (The Hague: Mouton,
1874).
(14)
Broca, “Remarques sur le Siège de
la Faculté du Langage
Articulé.”
(15)
Levelt, A
History of Psycholinguistics,
70–73.
(16)
Levelt, A
History of Psycholinguistics,
72-73.
(17)
Levelt, A
History of Psycholinguistics,
79.
(18)
L. Lichtheim, “Über Aphasie,”
Deutsches Archiv für
Klinische Medizin 36 (1885): 204–268.
Also see L. Lichtheim, “On Aphasia,” Brain 7 (1885):
433–484.
(19)
N. Geschwind, “The Organization of
Language and the Brain,” Science 170 (1970):
940–944.
(20)
F. de Saussure, Cours de Linguistique
Générale (1916). Paris: Payot. A Sign
Links “A Concept and an Acoustic Image” (Two Mental
Entities). This Idea Agrees Well with Earlier
Notions Used by Neurologists and Biologists. For
Example, We Find Similar Ideas in Broca (“Remarques
sur le Siege de la Faculte du Langage Articule”)
and C. Darwin, The Descent
of Man, and Selection in Relation to Sex
(1871). London: John Murray. See chapter
10.
(21)
Saussure, Cours de Linguistique
Générale.
(22)
Eling, “Neurolinguistics,
History of,” 683.
(23)
“Any Description and
Classification of Aphasic Syndromes Must
Begin with the Question of What Aspects of
Language Are Impaired,” Is the Programmatic
Statement from R. Jakobson, “Two Aspects of
Language and Two Types of Aphasic
Disturbances,” in Fundamentals of Language,
ed. R. Jakobson
and M. Halle (The Hague: Mouton, 1956).
For Further Discussion, See also R.
Jakobson, “Towards a Linguistic Typology
of Aphasic Impairments,” in
Disorders of Language, ed. A. V. S. de Reuck and
M. O’Connor (Boston: Little, Brown,
1964), 21–41, and R. Jakobson, “Toward a
Linguistic Classification of Aphasic
Impairments,” Selected
Writings II (The Hague: Mouton,
1970).
(24)
Levelt, A History of
Psycholinguistics, 405:
“Jakobson Remained an Exception in
Aphasiology until the ‘Cognitive
Revolution.’ The Field Suffered from a
Persistent Lack of Linguistic
Sophistication in Both Method and
Theory.”
(25)
N. Chomsky, Syntactic Structures
(The Hague: Mouton, 1957). See also his Papers from
the 1955–1960 Period.
(26)
N. Chomsky, Aspects of the Theory of
Syntax (Cambridge, MA: MIT Press
1965).
(27)
H, Gardner, The Mind’s New Science: A History
of the Cognitive Revolution (New York:
Basic Books, 1987); G. A. Miller, “The Cognitive
Revolution: A Historical Perspective,” Trends in Cognitive
Sciences 7 (2003):
141–144.
(28)
Levelt, A
History of Psycholinguistics,
18.
(29)
J. Cohen-Cole, The Open Mind: Cold War Politics
and the Sciences of Human Nature
(Chicago: University of Chicago Press,
2014).
(30)
G. A. Miller and K. O. McKean, “A
Chronometric Study of Some Relations between
Sentences,” Quarterly
Journal of Experimental Psychology 16
(1964): 297–308; Y. Grodzinsky, “The Neurology of
Syntax: Language Use without Broca's Area,”
Behavioral and Brain
Sciences 23 (2000):
1–21.
(31)
E. C. Trager, “The Field of
Neurolinguistics,” Studies
in Linguistics 15 (1961): 70–71. See
also the early works by Alexander Luria and
others.
(32)
E. H. Lenneberg, Biological Foundations of
Language (New York: Wiley,
1967).
(33)
H. A. Whitaker, Editorial.
Brain and
Language 1 (1974):
iii-iv.
(34)
M. Kutas and S. A. Hillyard,
“Reading Senseless Sentences: Brain Potentials
Reflect Semantic Incongruity,” Science 207 (1980):
203–205; L. Osterhout and P. J. Holcomb,
“Event-Related Brain Potentials Elicited by
Syntactic Anomaly,” Journal
of Memory and Language 31 (1992):
785–806; P. Hagoort, C. Brown, and J. Groothusen,
“The Syntactic Positive Shift (SPS) as an ERP
Measure of Syntactic Processing,” Language and Cognitive
Processes 8 (1993):
439–483.
(35)
M. Mather, J. T. Cacioppo, and N.
Kanwisher, “Introduction to the Special Section: 20
Years of fMRI—What Has it Done for Understanding
Cognition?” Perspectives on
Psychological Science 8 (2013):
41–43.
(36)
M. A. Just, P. A. Carpenter, T. A.
Keller, W. F. Eddy, and K. R. Thulborn, “Brain
Activation Modulated by Sentence Comprehension,”
Science 274
(1996): 114–116.
الفصل الثاني: تعيين اللغة في زمن الدماغ
(1)
This Is True in Most Circumstances,
but People with Speech Disorders, for Example, Do
Experience Delays between Intention and Production.
The Same Can be Said for Second-Language Learners and
Some Aphasic Patients.
(2)
J. Hirschberg and C. D. Manning,
“Advances in Natural Language Processing,” Science 349 (2015):
261–266.
(3)
Meyer, D. E., A. M. Osman, D. E.
Irwin, and S. Yantis, “Modern Mental Chronometry,”
Biological
Psychology 26, nos. 1–3 (1988):
3–67.
(4)
G. A. Miller and K. O. McKean, “A
Chronometric Study of Some Relations between
Sentences,” Quarterly
Journal of Experimental Psychology 16
(1964): 297–308.
(5)
S. J. Luck and E. S. Kappenman,
eds., The Oxford Handbook
of Event-Related Potential Components
(New York: Oxford University Press,
2011).
(6)
J. Bickle, “Revolutions in
Neuroscience: Tool Development,” Frontiers
in Systems Neuroscience 10 (2016): 24;
D. Parker, “Kuhnian Revolutions in Neuroscience:
The Role of Tool Development,” Biology and Philosophy
33, no. 3 (2018): 17.
(7)
W. J. Levelt, Speaking: From Intention to
Articulation (Cambridge, MA: MIT
Press, 1993); G. Hickok and D. Poeppel, “The
Cortical Organization of Speech Processing,”
Nature Reviews
Neuroscience 8 (2017): 393; D. B. Fry,
The Physics of
Speech (Cambridge: Cambridge
University Press, 1979).
(8)
P. J. Monahan, “Phonological
Knowledge and Speech Comprehension,” Annual Review of
Linguistics 4 (2018):
21–47.
(9)
D. Poeppel, C. Phillips, E.
Yellin, H. A. Rowley, T. P. Roberts, and A.
Marantz, “Processing of Vowels in Supratemporal
Auditory Cortex,” Neuroscience Letters 221 (1997):
145–148.
(10)
T. H. Heinks-Maldonado, D. H.
Mathalon, M. Gray, and J. M. Ford, “Fine-Tuning of
Auditory Cortex during Speech Production,”
Psychophysiology
42 (2005):
180–190.
(11)
D. Poeppel and P. J. Monahan,
“Feedforward and Feedback in Speech Perception:
Revisiting Analysis by Synthesis,” Language and Cognitive
Processes 26 (2011):
935–951.
(12)
C. Phillips, T. Pellathy, A.
Marantz, E. Yellin, K. Wexler, D. Poeppel, M.
McGinnis, and T. Roberts, “Auditory Cortex Accesses
Phonological Categories: An MEG Mismatch Study,”
Journal of Cognitive
Neuroscience 12 (2000): 1038–1055; C.
Phillips, “Levels of Representation in the
Electrophysiology of Speech Perception,” Cognitive Science 25
(2001): 711–731; M. T. Diaz and T. Y. Swaab,
“Electrophysiological Differentiation of
Phonological and Semantic Integration in Word and
Sentence Contexts,” Brain
Research 1146 (2007):
85–100.
(13)
V. Van Wassenhove, K. W. Grant,
and D. Poeppel, “Visual Speech Speeds Up the Neural
Processing of Auditory Speech,” Proceedings of the National Academy
of Sciences 102 (2005):
1181-1186.
(14)
M. Kutas and K. D. Federmeier,
“Thirty Years and Counting: Finding Meaning in the
N400 Component of the Event-Related Brain Potential
(ERP),” Annual Review of
Psychology 62 (2011):
621–647.
(15)
M. Kutas and S. A. Hillyard,
“Reading Senseless Sentences: Brain Potentials
Reflect Semantic Incongruity,” Science 207 (1980):
203–205; M. Kutas and S. A. Hillyard, “Brain
Potentials during Reading Reflect Word Expectancy
and Semantic Association,” Nature 307 (1984):
161.
(16)
D. Embick, and D. Poeppel,
“Towards a Computational(ist) Neurobiology of
Language: Correlational, Integrated and Explanatory
Neurolinguistics,” Language, Cognition and Neuroscience
30 (2015): 357–366.
(17)
Kutas and Federmeier, “Thirty
Years and Counting”; G. Baggio and P. Hagoort, “The
Balance between Memory and Unification in
Semantics: A Dynamic Account of the N400,”
Language and Cognitive
Processes 26 (2011):
1338–1367.
(18)
L. Pylkkanen and A. Marantz,
“Tracking the Time Course of Word Recognition with
MEG,” Trends in Cognitive
Sciences 7 (2003):
187–189.
(19)
J. J. Van Berkum, “Understanding
Sentences in Context: What Brain Waves Can Tell
Us,” Current Directions in
Psychological Science 17 (2008):
376–380; L. Pylkkänen, “Composition of Complex
Meaning: Interdisciplinary Perspectives on the Left
Anterior Temporal Lobe,” in Neurobiology of Language, ed. G.
Hickok and S. L. Small, 621–631 (Orlando, FL:
Academic Press, 2016); G. Baggio, Meaning in the Brain
(Cambridge, MA: MIT Press,
2018).
(20)
L. Osterhout and P. J. Holcomb,
“Event-Related Brain Potentials Elicited by
Syntactic Anomaly,” Journal
of Memory and Language 31 (1992):
785–806; P. Hagoort, C. Brown, and J. Groothusen,
“The Syntactic Positive Shift (SPS) as an ERP
Measure of Syntactic Processing,” Language and Cognitive Processes
8 (1993):
439–483.
(21)
The answer is was. This ERP result is
from L. Osterhout and P. J. Holcomb, “Event-Related
Brain Potentials Elicited by Syntactic Anomaly,”
Journal of Memory and
Language 31 (1992):
785–806.
(22)
P. Hagoort, “How the Brain Solves
the Binding Problem for Language: A
Neurocomputational Model of Syntactic Processing,”
NeuroImage 20
(2003); S18–S29; A. D. Friederici, “Towards a
Neural Basis of Auditory Sentence Processing,”
Trends in Cognitive
Sciences 6 (2002),
78–84.
(23)
A. Kim and L. Osterhout, “The
Independence of Combinatory Semantic Processing:
Evidence from Event-Related Potentials,” Journal of Memory and
Language 52 (2005): 205–225; G. R.
Kuperberg, “Neural Mechanisms of Language
Comprehension: Challenges to Syntax,” Brain Research 1146
(2007): 23–49; O. Michalon and G. Baggio,
“Meaning-Driven Syntactic Predictions in a Parallel
Processing Architecture: Theory and Algorithmic
Modeling of ERP Effects,” Neuropsychologia 131 (2019):
171–183.
(24)
S. Crain and M. Steedman, “On Not
Being Led Up the Garden Path: The Use of Context by
the Syntactic Processor,” in Natural Language Parsing:
Psychological, Computational and Theoretical
Perspectives, eds. David R. Dowty,
Arnold Zwicky, and Lauri Karttunen (Cambridge:
Cambridge University Press,
1985).
(25)
Friederici, “Towards a Neural
Basis”; Hagoort, “How the Brain Solves the Binding
Problem”; K. Steinhauer and J. E Drury, “On the
Early Left-Anterior Negativity (ELAN) in Syntax
Studies,” Brain and
Language 120 (2012):
135–162.
(26)
For a recent study, see L. A.
Fromont, K. Steinhauer, and P. Royle, “Verbing
Nouns and Nouning Verbs: Using a Balanced Design
Provides ERP Evidence against ‘Syntax-First’
Approaches to Sentence Processing,” PLoS One 15 (2020):
e0229169.
الفصل الثالث: تعيين اللغة في حيز الدماغ
(1)
J. A. Fodor, “Diary,” London Review of Books 21
(1999): 68–69, https://www
.lrb.co.uk/v21/n19/jerry-fodor/diary.
(2)
S. Dehaene and L. Cohen, “Cultural
Recycling of Cortical Maps,” Neuron 56 (2007):
384–398.
(3)
N. K. Logothetis, J. Pauls, M.
Augath, T. Trinath, and A. Oeltermann,
“Neurophysiological Investigation of the Basis of
the fMRI Signal,” Nature,
412 (2001): 150; N. K. Logothetis,
“The Ins and Outs of fMRI Signals,” Nature Neuroscience 10
(2007): 1230.
(4)
H. H. Clark, Using Language
(Cambridge: Cambridge University Press, 1996); P.
Hagoort, “The Neurobiology of Language beyond
Single-Word Processing,” Science 366 (2019):
55–58.
(5)
G. Baggio, Meaning in the Brain (Cambridge, MA:
MIT Press, 2018).
(6)
Wernicke’s area, according to
standard, classical definitions, is approxi-mately
the posterior half or third of the STG.
Functionally, it is a larger portion of temporal
cortex if one defines it as the region that, when
damaged, will yield Wernicke’s aphasia. On this
view, Wernicke’s area would be a bigger region than
shown in the figure.
(7)
E. F. Chang, J. W. Rieger, K.
Johnson, M. S. Berger, N. M. Barbaro, and R. T.
Knight, “Categorical Speech Representation in Human
Superior Temporal Gyrus,” Nature Neuroscience 13 (2010): 1428;
A. Flinker, E. F. Chang, N. M., Barbaro, M. S.
Berger, and R. T. Knight, “Centimeter Language
Organization in the Human Temporal Lobe,” Brain and Language 117
(2011): 103–109; H. G. Yi, M. K. Leonard, and E. F.
Chang, “The Encoding of Speech Sounds in the
Superior Temporal Gyrus,” Neuron 102 (2019):
1096–1110.
(8)
J. P. Rauschecker and S. K. Scott,
“Maps and Streams in the Auditory Cortex: Nonhuman
Primates Illuminate Human Speech Processing,”
Nature
Neuroscience 12 (2009):
718.
(9)
P. W. Hullett, L. S. Hamilton, N.
Mesgarani, C. E. Schreiner, and E. F. Chang, “Human
Superior Temporal Gyrus Organization of
Spectrotemporal Modulation Tuning Derived from
Speech Stimuli,” Journal of
Neuroscience 36 (2016): 2014–2026; L.
S. Hamilton, E. Edwards, and E. F. Chang, “A
Spatial Map of Onset and Sustained Responses to
Speech in the Human Superior Temporal Gyrus,”
Current
Biology 28 (2018): 1860–1871; K.
Jasmin, C. F. Lima, and S. K. Scott, “Understanding
Rostral-Caudal Auditory Cortex Contributions to
Auditory Perception,” Nature Reviews Neuroscience 20
(2019): 425–434; D. Poeppel, “The Analysis of
Speech in Different Temporal Integration Windows:
Cerebral Lateralization as ‘Asymmetric Sampling in
Time,’” Speech
Communication 41 (2003): 245–255; K.
Okada, F. Rong, J. Venezia, W. Matchin, I. H.
Hsieh, K. Saberi, J. T. Serences, and G. Hickok,
“Hierarchical Organization of Human Auditory
Cortex: Evidence from Acoustic Invariance in the
Response to Intelligible Speech,” Cerebral Cortex 20
(2010): 2486–2495.
(10)
J. Binder, “The New Neuroanatomy
of Speech Perception,” Brain 123 (2000): 2371–2372; J. R.
Binder, “The Wernicke Area: Modern Evidence and a
Reinterpretation,” Neurology 85 (2015): 2170–2175; J. R.
Binder, “Current Controversies on Wernicke’s Area
and Its Role in Language,” Current Neurology and Neuroscience
Reports 17 (2017): 58; Gregory Hickok
Reviews the Evidence Here:
https://youtu.be/ShtQVAsfhSQ.
(11)
J. M. Rodd, M. H. Davis, and I. S.
Johnsrude, “The Neural Mechanisms of Speech
Comprehension: fMRI Studies of Semantic Ambiguity,”
Cerebral Cortex 15
(2005): 1261–1269; P. Hagoort, G.
Baggio, and R. M. Willems, “Semantic Unification,”
in The Cognitive
Neurosciences, 4th ed., ed. Michael S.
Gazzaniga, 819–836 (Cambridge, MA: MIT Press,
2009).
(12)
G. Hickok and D. Poeppel, “The
Cortical Organization of Speech Processing,”
Nature Reviews
Neuroscience 8 (2007): 393; D. Ben
Shalom and D. Poeppel, “Functional Anatomic Models
of Language: Assembling the Pieces,” Neuroscientist 14
(2008): 119–127; Hagoort et al., “Semantic
Unification”; D. Poeppel, K. Emmorey, G. Hickok,
and L. Pylkkänen, “Towards a New Neurobiology of
Language,” Journal of
Neuroscience 32 (2012):
14125–14131.
(13)
M. MacSweeney, R. Campbell, B.
Woll, M. J. Brammer, V. Giampietro, A. S. David, G.
A. Calvert, and P. K. McGuire, “Lexical and
Sentential Processing in British Sign Language,”
Human Brain
Mapping 27 (2006): 63–76; D. Poeppel,
K. Emmorey, G. Hickok, and L. Pylkkänen, “Towards a
New Neurobiology of Language,” Journal of Neuroscience
32 (2012): 14125–14131.
(14)
E. F., Lau, C. Phillips, and D.
Poeppel, “A Cortical Network for Semantics:
(De)Constructing the N400,” Nature Reviews Neuroscience 9 (2008):
920.
(15)
M. A. L., Ralph, E. Jefferies, E.,
K. Patterson, and T. T. Rogers, ‘The Neural and
Computational Bases of Semantic Cognition,”
Nature Reviews
Neuroscience 18 (2017): 42–45; L.
Pylkkänen, “The Neural Basis of Combinatory Syntax
and Semantics,” Science 366 (2019): 62–66.
(16)
S. B. Eickhoff, S. Heim, K.
Zilles, and K. Amunts, “A Systems Perspective on
the Effective Connectivity of Overt Speech
Production,” Philosophical
Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences
367 (2009): 2399–2421; N. Janssen and C.
C. R. Mendieta, “The Dynamics of Speech Motor
Control Revealed with Time-Resolved fMRI,”
Cerebral Cortex
30, no. 1 (2019): 241–255; N. T. Sahin,
S. Pinker, S. S. Cash, D. Schomer, and E. Halgren,
“Sequential Processing of Lexical, Grammatical, and
Phonological Information within Broca's Area,”
Science 326
(2009): 445–449; P. Hagoort and W. J. Levelt, “The
Speaking Brain,” Science 326 (2009):
372-373.
(17)
M. A. Just, P. A. Carpenter, T. A.
Keller, W. F. Eddy, and K. R. Thulborn, ‘Brain
Activation Modulated by Sentence Comprehension,”
Science 274
(1996): 114–116; D. Embick, A. Marantz, Y.
Miyashita, W. O'Neil, and K. L. Sakai, “A Syntactic
Specialization for Broca's Area,” Proceedings of the National Academy
of Sciences 97 (2000):
6150–6154.
(18)
M. Catani, D. K. Jones, and D. H.
Ffytche, “Perisylvian Language Networks of the
Human Brain,” Annals of
Neurology 57 (2005): 8–16; D. Saur, B.
W. Kreher, S. Schnell, D. Kümmerer, P. Kellmeyer,
M. S. Vry, R. Umarova, M. Musso, V. Glauche, S.
Abel, and W. Huber, “Ventral and Dorsal Pathways
for Language,” Proceedings
of the National Academy of Sciences
105 (2008): 18035–18040; A. D. Friederici, Language in Our Brain: The
Origins of a Uniquely Human Capacity (Cambridge,
MA: MIT Press,
2017).
(19)
N. Mesgarani, C. Cheung, K.
Johnson, and E. F. Chang, “Phonetic Feature
Encoding in Human Superior Temporal Gyrus,”
Science 343
(2014): 1006–1010. See also E. F. Chang, J. W.
Rieger, K. Johnson, M. S. Berger, N. M. Barbaro,
and R. T. Knight, “Categorical Speech
Representation in Human Superior Temporal Gyrus,”
Nature
Neuroscience 13 (2010):
1428.
(20)
E. Zaccarella, L. Meyer, M.
Makuuchi, and A. D. Friederici, “Building by
Syntax: The Neural Basis of Minimal Linguistic
Structures,” Cerebral
Cortex 27 (2017): 411–421; A. D.
Friederici, N. Chomsky, R. C. Berwick, A. Moro, and
J. J. Bolhuis, “Language, Mind and Brain,”
Nature Human
Behaviour 1 (2017): 713–722; E.
Zaccarella, M. Schell, and A. D. Friederici,
“Reviewing the Functional Basis of the Syntactic
Merge Mechanism for Language: A Coordinate-Based
Activation Likelihood Estimation Meta-Analysis,”
Neuroscience and
Biobehavioral Reviews 80 (2017):
646–656.
(21)
T. M. Snijders, T. Vosse, G.
Kempen, J. J. Van Berkum, K. M. Petersson, and P.
Hagoort, “Retrieval and Unification of Syntactic
Structure in Sentence Comprehension: An fMRI Study
Using Word-Category Ambiguity,” Cerebral Cortex 19
(2008), 1493–1503; Z. Zhu, P. Hagoort, J. X. Zhang,
G. Feng, H. C. Chen, M. Bastiaansen, and Z. Wang,
“The Anterior Left Inferior Frontal Gyrus
Contributes to Semantic Unification,” NeuroImage 60 (2012):
2230–2237.
(22)
M. Ben-Shachar, D. Palti, and Y.
Grodzinsky, “Neural Correlates of Syntactic
Movement: Converging Evidence from Two fMRI
Experiments,” NeuroImage 21 (2004),
1320–1336.
(23)
C. Rogalsky and G. Hickok, “The
Role of Broca's Area in Sentence Comprehension,”
Journal of Cognitive
Neuroscience 23 (2011):
1664–1680.
(24)
Y. Grodzinsky and A. Santi, “The
Battle for Broca’s Region,” Trends in Cognitive Sciences 12
(2008): 474–480; R. M. Willems and P. Hagoort,
“Broca’s Region: Battles Are Not Won by Ignoring
Half of the Facts,” Trends
in Cognitive Sciences 13 (2009):
101.
(25)
Pylkkänen, “The Neural Basis of
Combinatory Syntax and
Semantics.”
(26)
P. Hagoort and S. C. Levinson,
“Neuropragmatics,” in The
Cognitive Neurosciences, 667–674
(Cambridge, MA: MIT Press, 2014); P. Hagoort and P.
Indefrey, “The Neurobiology of Language beyond
Single Words,” Annual
Review of Neuroscience 37 (2014):
347–362; Baggio, Meaning in
the Brain.
(27)
A. M. Rapp, D. E. Mutschler, and
M. Erb, “Where in the Brain Is Non-Literal
Language? A Coordinate-Based Meta-Analysis of
Functional Magnetic Resonance Imaging Studies,”
NeuroImage 63
(2012): 600–610; I. C. Bohrn, U. Altmann, and A. M.
Jacobs, “Looking at the Brains behind Figurative
Language—A Quantitative Meta-Analysis of
Neuroimaging Studies on Metaphor, Idiom, and Irony
Processing,” Neuropsychologia 50 (2012):
2669–2683.
الفصل الرابع: نماذج اللغة في الدماغ
(1)
B. C. Van Fraassen, Scientific Representation: Paradoxes
of Perspective
(New York: Oxford University Press,
2010).
(2)
K. R. Popper, “Science as
Falsification,” Conjectures
and Refutations 1 (1963): 33–39; I.
Lakatos, “Criticism and the Methodology of Scientific
Research Programmes,” Proceedings of the Aristotelian Society
69 (1968): 149–86; I. Lakatos, ‘Falsification and the
Methodology of Scientific Research Programmes,” in
Can Theories Be
Refuted?, ed. Sandra G. Harding, 205–259
(Dordrecht: Springer, 1976); D. Deutsch, The Beginning of infinity:
Explanations That Transform the World
(London: Penguin UK, 2011).
(3)
D. Marr, Vision: A Computational investigation into the
Human Representation and Processing of Visual
information (Cambridge, MA: MIT Press,
2010).
(4)
R. Jackendoff, Foundations of Language: Brain,
Meaning, Grammar, Evolution (New York:
Oxford University Press, 2002); P. W. Culicover and
R. Jackendoff, Simpler
Syntax (New York: Oxford University
Press, 2005), and “The Simpler Syntax Hypothesis,”
Trends in Cognitive
Sciences 10 (2006): 413–418; G. R.
Kuperberg, “Neural Mechanisms of Language
Comprehension: Challenges to Syntax,” Brain Research 1146
(2007): 23–49; G. Baggio, Meaning in the Brain (Cambridge, MA:
MIT Press, 2018).
(5)
G. Lakoff, Women, Fire, and Dangerous Things
(Chicago: University of Chicago Press, 2008); H.
Kamp, J. Van Genabith, and U. Reyle, “Discourse
Representation Theory,” in Handbook of Philosophical Logic, eds.
Dov Gabbay and Franz Guenthner 125–394 (Berlin:
Springer, 2011); L. Horn, “Implicature,” in
Routledge Companion to
Philosophy of Language, ed. Delia
Graff Fara and Gillian Russell, 75-88 (New York:
Routledge, 2013); R. Stalnaker, Context (New York:
Oxford University Press,
2014).
(6)
W. J. Levelt, A History of Psycholinguistics: The
Pre-Chomskyan Era (New York: Oxford
University Press, 2013).
(7)
P. Warren, Introducing
Psycholinguistics (Cambridge:
Cambridge University Press, 2012); G.
Altmann, “Ambiguity, Parsing Strategies,
and Computational Models,” Language and Cognitive
Processes 3 (1988): 73–97; G.
T. Altmann, ‘The Language Machine:
Psycholinguistics in Review,” British Journal of
Psychology 92 (2001):
129–170.
(8)
F. Ferreira, K. G.,
Bailey, and V. Ferraro, “Good-Enough
Representations in Language Comprehension,”
Current
Directions in Psychological
Science 11 (2002): 11-15; M.
H. Christiansen and N. Chater, Creating Language:
Integrating Evolution, Acquisition, and
Processing (Cambridge, MA: MIT
Press, 2016).
(9)
For a discussion, see I.
Bornkessel-Schlesewsky and M. Schlesewsky,
“Sentence Processing: Toward a Neurobiological
Approach,” in The Oxford
Handbook of Neurolinguistics, ed.
Niels O. Schiller and Greig I. de Zubicaray,
676–709 (New York: Oxford University Press,
2019).
(10)
A. D. Friederici, Language in our Brain: The Origins
of a Uniquely Human Capacity
(Cambridge, MA: MIT Press,
2017).
(11)
Some points of contact are
discussed in A. D. Friederici, N. Chomsky, R. C.
Berwick, A. Moro, and J. J. Bolhuis, “Language,
Mind and Brain,” Nature
Human Behaviour 1 (2017):
713–722.
(12)
P. Hagoort, “On Broca, Brain, and
Binding: A New Framework,” Trends in Cognitive Sciences 9
(2005): 416–423, and “MUC (Memory, Unification,
Control): A Model on the Neurobiology of Language
beyond Single Word Processing,” in Neurobiology of
Language, ed. Gregory Hickok and Steven
L. Small, 339–347 (Orlando, FL: Academic Press,
2016).
(13)
H. D. Xiang, H. M.Fonteijn, D. G.
Norris, and P. Hagoort, “Topographical Functional
Connectivity Pattern in the Perisylvian Language
Networks,” Cerebral
Cortex 20 (2009),
549–560.
(14)
E. C. Ferstl, J. Neumann, C.
Bogler, and D. Y. Von Cramon, “The Extended
Language Network: A Meta-Analysis of Neuroimaging
Studies on Text Comprehension,” Human Brain Mapping 29
(2008): 581–593; I. C. Bohrn, U. Altmann, and A. M.
Jacobs, “Looking at the Brains behind Figurative
Language—A Quantitative Meta-Analysis of
Neuroimaging Studies on Metaphor, Idiom, and Irony
Processing,” Neuropsychologia 50 (2012),
2669–2683; A. M. Rapp, D. E. Mutschler, and M. Erb,
“Where in the Brain Is Nonliteral Language? A
Coordinate-Based Meta-Analysis of Functional
Magnetic Resonance Imaging Studies,” Neuroimage 63 (2012):
600–610; P. Hagoort and P. Indefrey, “The
Neurobiology of Language beyond Single Words,”
Annual Review of
Neuroscience 37 (2014): 347–362;
Baggio, Meaning in the
Brain.
(15)
R. Jackendoff, Foundations of Language: Brain,
Meaning, Grammar,
Evolution (New York: Oxford University
Press, 2002); Baggio, Meaning in the
Brain.
(16)
G. Hickok and D. Poeppel, “Dorsal
and Ventral Streams: A Framework for Understanding
Aspects of the Functional Anatomy of Language,”
Cognition 92,
nos. 1-2 (2004): 67–99; G. Hickok and D. Poeppel,
“The Cortical Organization of Speech Processing,”
Nature Reviews
Neuroscience 8 (2007):
393.
(17)
D. Poeppel, K. Emmorey, G. Hickok,
and L. Pylkkänen, “Towards a New Neurobiology of
Language,” Journal of
Neuroscience 32 (2012):
14125–14131.
(18)
E. Jonas and K. P. Kording, “Could
a Neuroscientist Understand a Microprocessor?”
PLoS Computational
Biology 13 (2017): e1005268. For an
Early Discussion of Computational Models in
Neurolinguistics, see M. A. Arbib and D. Caplan,
“Neurolinguistics Must Be Computational,” Behavioral and Brain
Sciences 2 (1979): 449–460 (See Also
the Commentary Section).
(19)
On Composition, See A. E. Martin
and L. A. Doumas, “A Mechanism for the Cortical
Computation of Hierarchical Linguistic Structure,”
PLoS Biology
15 (2017): e2000663; A. E. Martin and L.
A. Doumas, “Predicate Learning in Neural Systems:
Using Oscillations to Discover Latent Structure,”
Current Opinion in
Behavioral Sciences 29 (2019): 77–83;
A. E. Martin and G. Baggio, Modeling Meaning
Composition from Formalism to Mechanisms,”
Philosophical
Transactions of the Royal Society B
375 (2019): 20190298.
الفصل الخامس: نمو شبكات اللغة
(1)
G. F. Marcus, S. Pinker, M. Ullman,
M. Hollander, T. J. Rosen, F. Xu, and H. Clahsen,
“Overregularization in Language Acquisition,”
Monographs of the Society
for Research in Child Development 57
(1992): i, iii, v-vi, 1–178.
(2)
R. Ruhland and P. van Geert,
“Jumping into Syntax: Transitions in the Development
of Closed Class Words,” British Journal of Developmental Psychology
16 (1998): 65–95.
(3)
For example, See the Speech and
Language Developmental Milestones of the US National
Institutes of Health:
www.nidcd.nih.gov/health/speech-and-language.
(4)
According to a Recent Estimate, “The
Average English-Speaking Adult Has Learned 12.5
Million Bits of Information [Less than 1.5
Megabytes], the Majority of
which Is Lexical Semantics”; F. Mollica and S. T.
Piantadosi, “Humans Store about 1.5 Megabytes of
Information during Language Acquisition,” Royal Society Open Science 6 (2019):
181393.
(5)
The Fact That This Is Not How
Computers and Programming Work Suggests, Again, That
the Computing Metaphor Is Not Quite Right as a Model
of the Mind.
(6)
P. K. Kuhl, “Early Language
Acquisition: Cracking the Speech Code,” Nature Reviews
Neuroscience 5 (2004): 831–843; P. K.
Kuhl, “Brain Mechanisms in Early Language
Acquisition,” Neuron 67 (2010):
713–727.
(7)
G. Dehaene-Lambertz and E. S.
Spelke, “The Infancy of the Human Brain,” Neuron 88 (2015):
93–109; A. D. Friederici, “Neurophysiological
Markers of Early Language Acquisition: From
Syllables to Sentences,” Trends in Cognitive Sciences 9
(2005): 481–488; Kuhl, “Early Language
Acquisition.”
(8)
R. A. Thompson and C. A. Nelson,
“Developmental Science and the Media: Early Brain
Development,” American
Psychologist 56 (2001): 5; G.
Dehaene-Lambertz, L. Hertz-Pannier, and J. Dubois,
“Nature and Nurture in Language Acquisition:
Anatomical and Functional Brain-Imaging Studies in
Infants,” Trends in
Neuroscience 29 (2006): 367–373; G.
Dehaene-Lambertz, L. Hertz-Pannier, J. Dubois, and
S. Dehaene, “How Does Early Brain Organization
Promote Language Acquisition in Humans?” European Review 16
(2008): 399–411.
(9)
Y. Zhang, P. K. Kuhl, T. Imada, M.
Kotani, and Y. I. Tohkura, “Effects of Language
Experience: Neural Commitment to Language-Specific
Auditory Patterns,” Neuroimage 26 (2005): 703–720; P.
Kuhl and M. Rivera-Gaxiola, Neural Substrates of
Language Acquisition,” Annual Review of Neuroscience 31
(2008) : 511–534.
(10)
E. Bergelson and D. Swingley, “At
6-9 Months, Human Infants Know the Meanings of Many
Common Nouns,” Proceedings
of the National Academy of Sciences
109 (2012): 3253–3258; E. Bergelson and R. N.
Aslin, “Nature and Origins of the Lexicon in
6-Mo-Olds,” Proceedings of
the National Academy of Sciences 114
(2017): 12916–12921.
(11)
Z. Káldy and N. Sigala, ‘The
Neural Mechanisms of Object
Working Memory: What Is
Where in the Infant Brain?” Neuroscience and Biobehavioral
Reviews 28 (2004): 113–121; K.
Grill-Spector, G. Golarai, and J. Gabrieli,
“Developmental Neuroimaging of the Human Ventral
Visual Cortex,” Trends in
Cognitive Sciences 12 (2008): 152–162;
L. B. Smith, “It's All Connected: Pathways in
Visual Object Recognition and Early Noun Learning,”
American
Psychologist 68 (2013):
618.
(12)
A. Qiu, S. Mori, and M. I. Miller,
“Diffusion Tensor Imaging
for Under-standing
Brain Development in Early Life,” Annual Review of
Psychology 66
(2015): 853–876.
(13)
M. Frank, M., Braginsky, D.
Yurovsky and V. Marchman, Variability and Consistency in Early Language
Learning: The Wordbank Project
(Cambridge, MA: MIT Press, 2021). See also
http://wordbank.stanford.edu.
(14)
J. Franck, S. Millotte, A. Posada,
and L. Rizzi, “Abstract Knowledge of Word Order by
19 Months: An Eye-Tracking Study,” Applied Psycholinguistics
34 (2013):
323–336.
(15)
See, among Others, G. F. Marcus,
S. Vijayan, S. B. Rao, and P. M. Vishton, “Rule
Learning by Seven-Month-Old Infants,” Science 283 (1999):
77–80; J. Gervain, M. Nespor, R. Mazuka, R. Horiem,
and J. Mehler, “Bootstrapping Word Order in
Prelexical Infants: A Japanese-Italian
Cross-Linguistic Study,” Cognitive Psychology 1 (2008): 56–74;
J. Gervain, and J. F. Werker, “Prosody Cues Word
Order in 7-Month-Old Bilingual Infants,” Nature Communications 4
(2013): 1490; S. Benavides-Varela and J. Gervain,
“Learning Word Order at Birth: A NIRS Study,”
Developmental Cognitive
Neuroscience 25 (2017):
198–208.
(16)
S. R. Waxman and D. B. Markow,
“Words as Invitations to Form Categories: Evidence
from 12-to 13-Month-Old Infants,” Cognitive Psychology 29
(1995): 257–302; B. Höhle, J. Weissenborn, D.
Kiefer, A. Schulz, and M. Schmitz, ‘Functional
Elements in Infants’ Speech Processing: The role of
Determiners in the Syntactic Categorization of
Lexical Elements,” Infancy 5 (2004): 341–353; Y. Kedar,
M. Casasola, and B. Lust, “Getting There Faster:
18-and 24 Month-Old Infants’ Use of Function Words
to Determine Reference,” Child Development 77 (2006): 325–338;
A. Christophe, S. Millotte, S Bernal, and J. Lidz,
“Bootstrapping Lexical and Syntactic Acquisition,”
Language and Speech
51 (2008): 61–75.
(17)
R. Jackendoff, “A Parallel
Architecture Perspective on Language Processing,”
Brain Research
1146 (2007): 2–22.
(18)
E. Morgan, A. van der Meer, M.
Vulchanova, D. E. Blasi, and G. Baggio, Meaning
before Grammar: A Review of ERP Experiments on the
Neurodevelopmental Origins of Semantic Processing,”
Psychonomic Bulletin and
Review 27 (2020):
441–464.
الفصل السادس: الدماغ وازدواج اللغة
(1)
F. Grosjean, “Neurolinguists,
Beware! The Bilingual Is Not Two Monolinguals in One
Person,” Brain and
Language 36 (1989):
3–15.
(2)
F. Grosjean, Studying Bilinguals (New York: Oxford
University Press, 2008).
(3)
E. L Newport, D. Bavelier, and H.
J. Neville, “Critical Thinking about Critical
Periods: Perspectives on a Critical Period for
Language Acquisition,” in Language, Brain and Cognitive Development:
Essays in Honor of Jacques Mehler, ed.
E. Dupoux, 481–502 (Cambridge, MA: MIT Press,
2001); M. S. Thomas and M. H. Johnson, “New
Advances in Understanding Sensitive Periods in
Brain Development,” Current
Directions in Psychological Science 17
(2008): 1–5.
(4)
E. I. Knudsen, “Sensitive Periods
in the Development of the Brain and Behavior,”
Journal of Cognitive
Neuroscience 16 (2004): 1412–1425; H.
B. Uylings, ‘Development of the Human Cortex and
the Concept of ‘Critical’ or ‘Sensitive’ Periods,”
Language
Learning 56 (2006):
59–90.
(5)
Newport et al. “Critical Thinking
about Critical Periods”; H. J. Neville, H. J., D.
L. Mills, and D. S. Lawson, “Fractionating
Language: Different Neural Subsystems with
Different Sensitive Periods,” Cerebral Cortex 2
(1992): 244–258; R. Slabakova, “Is There a Critical
Period for Semantics?” Second Language Research 22 (2006):
302-338; J. Rothman, “Why All Counter-Evidence to
the Critical Period Hypothesis in Second Language
Acquisition Is Not Equal or Problematic,” Language and Linguistics
Compass 2 (2008):
1063–1088.
(6)
Thomas and Johnson, “New Advances
in Understanding”; A. E. Hernandez, The Bilingual Brain (New
York: Oxford University Press, 2013); S. Sulpizio,
N. Del Maschio, D. Fedeli, and J. Abutalebi,
“Bilingual Language Processing: A Meta-Analysis of
Functional Neuroimaging Studies,” Neuroscience and Biobehavioral
Reviews 108 (2020):
834–853.
(7)
L. Osterhout, A. Poliakov, K.
Inoue, J. McLaughlin, G. Valentine, I. Pit- kanen,
C. Frenck-Mestre, and J. Hirschensohn,
“Second-Language Learning and Changes in the
Brain,” Journal of
Neurolinguistics 21 (2008):
509–521.
(8)
D. Klein, K. Mok, J. K. Chen, and
K. E. Watkins, “Age of Language Learning Shapes
Brain Structure: A Cortical Thickness Study of
Bilingual and Monolingual Individuals,” Brain and Language 131
(2014): 20–24.
(9)
Sulpizio et al., “Bilingual
Language Processing.”
(10)
C. D. Martin, B. Dering, E. M.
Thomas, and G. Thierry, “Brain Potentials Reveal
Semantic Priming in Both the ‘Active’ and the
‘Non-Attended’ Language of Early Bilinguals,”
NeuroImage 47
(2009): 326–333.
(11)
J. Abutalebi and D. Green,
“Bilingual Language Production: The Neurocognition
of Language Representation and Control,” Journal of
Neurolinguistics 20 (2007): 242-275;
Hernandez, The Bilingual
Brain; C. Reverberi, A. K. Kuhlen, S.
Seyed-Allaei, R. S. Greulich, A. Costa, J.
Abutalebi, and J. D. Haynes, “The Neural Basis of
Free Language Choice in Bilingual Speakers:
Disentangling Language Choice and Language
Execution,” NeuroImage 177 (2018):
108–116.
(12)
A. S. Dick, N. L. Garcia, S. M.
Pruden, W. K. Thompson, S. W. Hawes, M. T.
Sutherland, M. C. Riedel, A. R. Laird, and R.
Gonzalez, “No Evidence for a Bilingual Executive
Function Advantage in the ABCD Study,” Nature Human Behaviour 3
(2019): 692–701.
(13)
E. Bialystok, F. I. Craik, and G.
Luk, “Bilingualism: Consequences for Mind and
Brain,” Trends in Cognitive
Sciences 16 (2012):
240–250.
الفصل السابع: الدماغ وتعلم القراءة والكتابة
(1)
UNESCO Institute for Statistics
Global Databases, 2019.
(2)
S. Dehaene, Reading in the Brain: The New Science of How We
Read (New York: Penguin,
2009).
(3)
Hemianopia is a loss of vision in
half of the visual field. Because Incoming Light Is
Projected by the Lens of Each Eye such that Visual
Field Images Are Inverted, the Left Half of Each
Retina Receives Light from the Right Visual Field,
and Vice Versa. The Left Half of Each Retina Is
Connected to the Left Occipital (Visual) Cortex,
and the Right Halves Are Wired up to the Right
Occipital Cortex. A Right Hemianopia Results from
Damage to the Left Visual Cortex, and Vice Versa
for a Left Hemianopia. See N. Geschwind, “The
Anatomy of Acquired Disorders of Reading,” in
Selected Papers on
Language and the Brain, ed. Norman
Geschwind, 1–17 (Berlin: Springer,
1974).
(4)
W. J. M. Levelt, A History of Psycholinguistics: The
Pre-Chomskyan Era (New York: Oxford
University Press, 2012.)
(5)
Dehaene, Reading in the
Brain.
(6)
The Posterior Lesion Is Most
Likely to Produce a Generalized Impairment of
Reading, as This Area Is Involved in Processing all
Types of Letter-Like Stimuli: If There Is Damage to
the Posterior Fusiform Gyrus, Signals from
Occipital Cortex Cannot Access Abstract
Orthographic Representations. The Anterior Lesion
Will Instead Damage only or Primarily N-Gram or
Word Representations, Sparing the Patient’s Ability
to Recognize Letters and Engage in Letter-by-Letter
Reading.
(7)
S. Epelbaum, P. Pinel, R.
Gaillard, C. Delmaire, M. Perrin, S. Dupont, S.
Dehaene, and L. Cohen, “Pure Alexia as a
Disconnection Syndrome: New Diffusion Imaging
Evidence for an Old Concept,” Cortex 44 (2008):
962–974.
(8)
J. V. Baldo, N. Kacinik, C. Ludy,
S. Paulraj, A. Moncrief, V. Piai, B. Curran, T.
Herron, and N. F. Dronkers, “Voxel-Based Lesion
Analysis of Brain Regions Underlying Reading and
Writing,” Neuropsychologia 115 (2018):
51–59.
(9)
Dehaene, Reading in the
Brain.
(10)
B. D. McCandliss, L. Cohen, and S.
Dehaene, “The Visual Word Form Area: Expertise for
Reading in the Fusiform Gyrus,” Trends in Cognitive
Sciences 7 (2003):
293–299.
(11)
S. Dehaene, S., F. Pegado, L. W.
Braga, P. Ventura, G. Nunes Filho, A. Jobert, G.
Dehaene-Lambertz, R. Kolinsky, J. Morais, and L.
Cohen, “How Learning to Read Changes the Cortical
Networks for Vision and Language,” Science 330 (2010):
1359–1364.
(12)
S. Dehaene, L. Cohen, J., Morais,
and R. Kolinsky, “Illiterate to Literate:
Behavioural and Cerebral Changes Induced by Reading
Acquisition,” Nature
Reviews Neuroscience 16 (2015):
234–244.
(13)
W. P. Morgan, “A Case of
Congenital Word Blindness,” British Medical
Journal 2 (1896):
1378.
(14)
G. Silani, G., U. Frith, J. F.
Demonet, F. Fazio, D. Perani, C. Price, C. D.
Frith, and E. Paulesu, “Brain Abnormalities
Underlying Altered Activation in Dyslexia: A Voxel
Based Morphometry Study,” Brain 128 (2005): 2453–2461; U. Kuhl,
N. E. Neef, I. Kraft, G. Schaadt, L. Dörr, J.
Brauer, I. Czepezauer, B. Müller, A. Wilcke, H.
Kirsten, F. Emmrich, J. Boltze, A. D. Friederici,
and M. A. Skeide, “The Emergence of Dyslexia in the
Developing Brain,” NeuroImage 211 (2020):
116633.
الفصل الثامن: علم اللغة العصبي
(1)
M. C. Dewan, A. Rattani, S. Gupta,
R. E. Baticulon, Y. C. Hung, M. Punchak, A. Agrawal,
A. O. Adeleye, M. G. Shrime, A. M. Rubiano, and J. V.
Rosenfeld, “Estimating the Global Incidence of
Traumatic Brain Injury,” Journal of Neurosurgery 130 (2018),
1080–1097; M. P. Lindsay, B. Norrving, R. L. Sacco,
M. Brainin, W. Hacke, S. Martins, J. Pandian, and V.
Feigin, “World Stroke Organization (WSO): Global
Stroke Fact Sheet” (2019); S. T. Engelter, M.
Gostynski, S. Papa, M. Frei, C. Born, V.
Ajdacic-Gross, F. Gutzwiller, and P. A. Lyrer,
“Epidemiology of Aphasia Attributable to First
Ischemic Stroke: Incidence, Severity, Fluency,
Etiology, and Thrombolysis,” Stroke 37 (2006):
1379–1384.
(2)
W. J. M. Levelt, A History of Psycholinguistics: The
Pre-Chomskyan Era (New York: Oxford
University Press, 2012; D. Vandenborre, E.
Visch-Brink, and P. Mariën, “The Development of
Modern Approaches to Aphasia: A Concise Overview,”
International Journal of
Rehabilitation Research 38 (2015):
189–194; N. F. Dronkers, M. V. Ivanova, and J. V.
Baldo, “What Do Language Disorders Reveal about
Brain-Language Relationships? from Classic Models to
Network Approaches,” Journal
of the International Neuropsychological
Society 23 (2017):
741–754.
(3)
H. H. J. Kolk, “Multiple Route
Plasticity,” Brain and
Language 71 (2000): 129–131; H. Duffau,
“The Error of Broca: From the Traditional
Localizationist: Concept to a Connectomal Anatomy of
Human Brain,” Journal of
Chemical Neuroanatomy 89 (2018):
73–81.
(4)
Engelter et al., “Epidemiology of
Aphasia.”
(5)
J. Fridriksson, J., D. B. den
Ouden, A. E. Hillis, G. Hickok, C. Rorden, A.
Basilakos, G. Yourganov, and L. Bonilha, “Anatomy
of Aphasia Revisited,” Brain 141 (2018):
848–862.
(6)
M. C. Tate, G. Herbet, S.
Moritz-Gasser, J. E. Tate, and H. Duffau,
“Probabilistic Map of Critical Functional Regions
of the Human Cerebral Cortex: Broca's Area
Revisited,” Brain 137 (2014):
2773–2782.
(7)
M. Mesulam, “Primary Progressive
Aphasia,”Annals of
Neurology 49 (2001):
425–432.
(8)
J. D. Stefaniak, A. D. Halai, and
M. A. L. Ralph, “The Neural and Neurocomputational
Bases of Recovery from Post-Stroke Aphasia,”
Nature Reviews
Neurology 16 (2019):
43–55.
(9)
D. Saur and G. Hartwigsen,
“Neurobiology of Language Recovery after Stroke:
Lessons from Neuroimaging Studies,” Archives of Physical Medicine and
Rehabilitation 93 (2012):
S15–S25.
(10)
A. Stockert, M. Wawrzyniak, J.
Klingbeil, K. Wrede, D. Kümmerer, G. Hartwigsen, C.
P. Kaller, C. Weiller, and D. Saur, “Dynamics of
Language Reorganization after Left Temporo-Parietal
and Frontal Stroke,” Brain 143 (2020):
844–861.
(11)
Y. Grodzinsky, Theoretical Perspectives on
Language Deficits (Cambridge, MA: MIT
Press, 1990). For an Overview and Further
Discussion, See J. Druks, Contemporary and Emergent Theories of
Agrammatism: A Neurolinguistic
Approach (London: Routledge/Psychology
Press, 2016).
(12)
A. Caramazza and E. B. Zurif,
“Dissociation of Algorithmic and Heuristic
Processes in Language Comprehension: Evidence from
Aphasia,” Brain and
Language 3 (1976):
572–582.
(13)
For a recent hypothesis on the
Division of Labor between Frontal and Temporal
Regions, See W. Matchin and G. Hickok, “The
Cortical Organization of Syntax,” Cerebral Cortex 30
(2020): 1481–1498.
(14)
P. Hagoort, M. Wassenaar, and C.
Brown, “Real-Time Semantic Compensation in Patients
with Agrammatic Comprehension: Electrophysiological
Evidence for Multiple-Route Plasticity,” Proceedings of the National Academy
of Sciences 100 (2003):
4340–4345.
(15)
For a discussion, see Druks,
Contemporary and Emergent
Theories.
الفصل التاسع: الوراثة العصبية للغة
(1)
C. D. Darlington, “The Genetic
Component of Language,” Heredity 1 (1947): 269–286; L. Jenkins,
“Language and Genetics,” Theoretical Linguistics 5 (1978):
77–82; R. C. Berwick and N. Chomsky, “Why Only Us:
Recent Questions and Answers,” Journal of
Neurolinguistics 43 (2017):
166–177.
(2)
For an Excellent and Readable
Introduction to Human Genetics, See S. Mukherjee,
The Gene: An Intimate
History (New York: Penguin Books,
2016).
(3)
K. L. Grasby et al., “The Genetic
Architecture of the Human Cerebral Cortex,”
Science 367,
no. 6484 (2020): eeaa6690. For background, see S.
E. Fisher and S. C. Vernes, “Genetics and the
Language Sciences,” Annual
Review of Linguistics 1, no. 1 (2015):
289–310; S. A. Graham and S. E. Fisher,
“Understanding Language from a Genomic
Perspective,” Annual Review
of Genetics 49 (2015):
131–160.
(4)
C. S. Lai, S. E. Fisher, J. A.
Hurst, F. Vargha-Khadem, and A. P.
Monaco, “A Forkhead-Domain
Gene Is Mutated in a Severe Speech and Language
Disorder,” Nature 413 (2001):
519–523.
(5)
The Articles Can be Retrived at
http://news.bbc.co.uk/27hi/sci/tech/1575471.stm
and
http://news.bbc.co.uk/2Zhi/science/nature/2192969.stm.
(6)
S. E. Fisher, “Human Genetics: The
Evolving Story of FOXP2,” Current
Biology 29 (2019):
R65–R67.
(7)
For early studies, See K. E.
Watkins, F. Vargha-Khadem, J. Ashburner, R. D.
Passingham, A. Connelly, K. J. Friston, R. S.
Frackowiak, M. Mishkin, and D. G. Gadian, “MRI
Analysis of an Inherited Speech and Language
Disorder: Structural Brain Abnormalities,”
Brain 125
(2002): 465–478; F. Liégeois, T. Baldeweg, A.
Connelly, D. G. Gadian, M. Mishkin, and F.
Vargha-Khadem, “Language fMRI Abnormalities
Associated with FOXP2 Gene Mutation,” Nature Neuroscience 6
(2003): 1230–1237.
(8)
M. B. Johnson, Y. I., Kawasawa, C.
E. Mason, Ž. Krsnik, G. Coppola, D. Bogdanović, D.
H. Geschwind, S. M. Mane, M. W. State, and N.
Šestan, “Functional and Evolutionary Insights into
Human Brain Development through Global
Transcriptome Analysis,” Neuron 62 (2009):
494–509.
(9)
S. C. Vernes, D. F. Newbury, B. S.
Abrahams, L. Winchester, J. Nicod, M. Groszer, M.
Alarcón, P. L. Oliver, K. E. Davies, D. H.
Geschwind, and A. P. Monaco, “A Functional Genetic
Link between Distinct Developmental Language
Disorders,” New England
Journal of Medicine 359 (2008):
2337–2345; S. A. Graham, P. Deriziotis, and S. E.
Fisher, “Insights into the Genetic Foundations of
Human Communication,” Neuropsychology Review 25 (2015):
3–26; P. Deriziotis and S. E. Fisher, “Speech and
Language: Translating the Genome,” Trends in Genetics 33
(2017): 642–656.
(10)
P. Pinel, F. Fauchereau, A.
Moreno, A. Barbot, M. Lathrop, D. Zelenika, D. Le
Bihan, J. B. Poline, T. Bourgeron, and S. Dehaene,
“Genetic Variants of FOXP2 and KIAA0319/TTRAP/THEM2
Locus Are Associated with Altered Brain Activation
in Distinct Language-Related Regions,” Journal of Neuroscience
32 (2012): 817–825; M. Hoogman, T. Guadalupe, M. P.
Zwiers, P. Klarenbeek, C. Francks, and S. E.
Fisher, “Assessing the Effects of Common Variation
in the FOXP2 Gene on Human Brain Structure,”
Frontiers in Human
Neuroscience 8 (2014): 473; S. A.
Graham and S. E. Fisher, “Understanding Language
from a Genomic Perspective,” Annual Review of
Genetics 49 (2015): 131–160; J. Uddén,
A. Hultén, K. Bendtz, Z. Mineroff, K. S. Kucera, A.
Vino, D. Fedorenko, P. Hagoort, and S. E. Fisher,
“Toward Robust Functional Neuroimaging Genetics of
Cognition,” Journal of
Neuroscience 39 (2019):
8778–8787.
(11)
S. E. Fisher and J. C. DeFries,
“Developmental Dyslexia: Genetic Dissection of a
Complex Cognitive Trait,” Nature Reviews Neuroscience 3 (2002):
767–780.
(12)
J. Williams and M. C. O’Donovan,
“The Genetics of Developmental Dyslexia,” European Journal of Human
Genetics 14 (2006):
681–689.
(13)
A. L. Giraud and F. Ramus,
“Neurogenetics and Auditory Processing in
Developmental Dyslexia,” Current Opinion in Neurobiology 23
(2013): 37–42.
(14)
T. M. Centanni, A. B. Booker, F.
Chen, A. M. Sloan, R. S. Carraway, R. L. Rennaker,
J. J. LoTurco, and M. P. Kilgard, “Knockdown of
Dyslexia-Gene Dcdc2 Interferes with Speech Sound
Discrimination in Continuous Streams,” Journal of Neuroscience
36 (2016): 4895–4906.
(15)
A. M. Galaburda, J. LoTurco, F.
Ramus, R. H. Fitch, and D. D. Rosen, “From Genes to
Behavior in Developmental Dyslexia,” Nature Neuroscience 9
(2006): 1213–1217.
(16)
A. Gialluisi, T. Guadalupe, C.
Francks, and S. E. Fisher, “Neuroimaging Genetic
Analyses of Novel Candidate Genes Associated with
Reading and Language,” Brain and Language 172 (2017):
9–15.
(17)
N. Becker, M. Vasconcelos, V.
Oliveira, F. C. D. Santos, L. Bizarro, R. M. D.
Almeida, J. Fumagalli De Salles, and M. R. S.
Carvalho, “Genetic and Environmental Risk Factors
for Developmental Dyslexia in Children: Systematic
Review of the Last Decade,” Developmental Neuropsychology 42
(2017): 423–445.
الفصل العاشر: علم السلوك العصبي للغة
(1)
C. I. Petkov and E. Jarvis,
“Birds, Primates, and Spoken Language Origins:
Behavioral Phenotypes and Neurobiological
Substrates,” Frontiers in
Evolutionary Neuroscience 4 (2012):
12.
(2)
E. D. Jarvis, “Evolution of Vocal
Learning and Spoken Language,” Science 366 (2019):
50–54.
(3)
M. D. Hauser, N. Chomsky, and W.
T. Fitch, “The Faculty of Language: What Is It, Who
Has It, and How Did It Evolve?” Science 298 (2002):
1569–1579; S. W. Townsend, S. Engesser, S. Stoll,
K. Zuberbühler, and B. Bickel, “Compo sitionality
in Animals and Humans,” PLoS Biology 16 (2018); K.
Zuberbühler, 2020. “Syntax and Compositionality in
Animal Communication,” Philosophical Transactions of the Royal Society
B, 375, no. 1789,
20190062.
(4)
E. D. Jarvis, “Learned Birdsong
and the Neurobiology of Human Language,” Annals of the New York Academy of
Sciences 1016 (2004): 749; S. Nowicki
and W. Searcy, “The Evolution of Vocal Learning,”
Current Opinion in
Neurobiology 28 (2014): 48–53; S. C.
Vernes and G. S. Wilkinson, “Behaviour, Biology and
Evolution of Vocal Learning in Bat,” Philosophical Transactions of the
Royal Society B 375 (2020):
20190061.
(5)
Jarvis, “Learned
Birdsong.”
(6)
S. Haesler, K. Wada, A. Nshdejan,
E. E. Morrisey, T. Lints, E. D. Jarvis, and C.
Scharff, “FoxP2 Expression in Avian Vocal Learners
and Non-Learners,” Journal
of Neuroscience 24 (2004): 3164–3175;
S. Haesler, C. Rochefort, B. Georgi, P. Licznerski,
P. Osten, and C. Scharff, “Incomplete and
Inaccurate Vocal Imitation after Knockdown of FoxP2
in Songbird Basal Ganglia Nucleus Area X,”
PLoS Biology 5
(2007).
(7)
T. Q. Gentner, K. M. Fenn, D.
Margoliash, and H. Nusbaum, “Recursive Syntactic
Pattern Learning by Songbirds,” Nature 440 (2006):
1204–1207: “We thus Demonstrate That Starlings Can
Recognize Syntactically Well-Formed Strings,
Including Those That Use a Recursive
Centre-Embedding Rule. At Least a Simple Level of
Recursive Syntactic Pattern Processing Is Therefore
Shared with Other Animals. These Results Challenge
the Recent Claim that Recursion Forms the
Computational Core of a Uniquely Human Narrow
Faculty for Language.” For a Critical Discussion,
see C. A. Van Heijningen, J. De Visser, W. Zuidema,
and C. Ten Cate, “Simple Rules Can Explain
Discrimination of Putative Recursive Syntactic
Structures by a Songbird Species,” Proceedings of the National Academy
of Sciences 106 (2009):
20538–20543.
(8)
M. S. Ficken and J. W. Popp,
“Syntactical Organization of the Gargle
Vocalization of the Black-Capped Chickadee,”
Parus
atricapillus. Ethology 91 (1992):
156–168.
(9)
C. N. Templeton, E. Greene, and K.
Davis, “Allometry of Alarm Calls: BlackCapped
Chickadees Encode Information about Predator Size,”
Science 308
(2005): 1934–1937.
(10)
Compositionality of Calls or Songs
Is Currently Not Attested in Songbirds. For a Claim
That It Might Be, see S. Engesser, A. R. Ridley,
and S. W. Townsend, “Meaningful Call Combinations
and Compositional Processing in the Southern Pied
Babbler,” Proceedings of
the National Academy of Sciences 113
(2016): 5976–5981. However, there Is also Some
Evidence That Their Calls Are Combinatorial:
Meaningful yet Constituted of Meaningless Elements,
a bit Like Words and Morphemes in Relation to Their
Constituent Sounds. See S. Engesser, J. L. Holub,
L. G. O’Neill, A. F. Russell, and S. W. Townsend,
“Chestnut-Crowned Babbler Calls Are Composed of
Meaningless Shared Building Blocks,” Proceedings of the National Academy
of Sciences 116 (2019):
19579–19584.
(11)
J. P. Rauschecker and S. K. Scott,
“Maps and Streams in the Auditory Cortex: Nonhuman
Primates Illuminate Human Speech Processing,”
Nature
Neuroscience 12 (2009): 718–724; I.
Bornkessel-Schlesewsky, M. Schlesewsky, S. L.
Small, and J. P. Rauschecker, “Neurobiological
Roots of Language in Primate Audition: Common
Computational Properties,” Trends in Cognitive Sciences 19
(2015): 142–150; F. Balezeau, B. Wilson, G.
Gallardo, F. Dick, W. A. Hopkins, A. Anwander, A.
D. Friederici, T. D. Griffiths, and C. I. Petkov,
“Primate Auditory Prototype in the Evolution of the
Arcuate Fasciculus,” Nature
Neuroscience 23 (2020):
1–4.
(12)
R. M. Seyfarth and D. L. Cheney,
“The Origin of Meaning in Animal Signals,”
Animal
Behaviour 124 (2017):
339–346.
(13)
R. Gil-da-Costa, A. Martin, M. A.
Lopes, M. Munoz, J. B. Fritz, and A. R. Braun,
“Species-Specific Calls Activate Homologs of
Broca’s and Wernicke’s Areas in the Macaque,”
Nature
Neuroscience 9 (2006): 1064–1070; J.
P. Taglialatela, J. L. Russell, J. A. Schaeffer,
and W. D. Hopkins, “Communicative Signaling
Activates ‘Broca’s’ Homolog in Chimpanzees,”
Current
Biology 18 (2008):
343–348.
(14)
K. Ouattara, A. Lemasson, and K.
Zuberbühler, “Campbell’s Monkeys Concatenate
Vocalizations into Context-Specific Call
Sequences,” Proceedings of
the National Academy of Sciences 106
(2009): 22026–22031.
(15)
K. Arnold, and K. Zuberbühler,
“Call Combinations in Monkeys: Compositional or
Idiomatic Expressions?” Brain and Language 120 (2012):
303–309; K. Zuberbühler and A. Lemasson, “Primate
Communication: Meaning from Strings of Calls,” in
Language and
Recursion, ed. Francis Lowenthal and
Laurent Lefebvre, 115–125 (New York: Springer,
2014); P. Schlenker, E. Chemla, and K. Zuberbühler,
“Semantics and Pragmatics of Monkey Communication,”
in Oxford Research
Encyclopedia of Linguistics, ed. Mark
Aronoff (Oxford: Oxford University Press, 2017); K.
Zuberbühler, “Combinatorial Capacities in
Primates,” Current Opinion
in Behavioral Sciences 21 (2018):
161–169.
(16)
Balezeau et al., “Primate Auditory
Prototype.”
الفصل الحادي عشر: مستقبل اللغويات العصبية
(1)
A. L. Giraud and D. Poeppel,
“Cortical Oscillations and Speech Processing:
Emerging Computational Principles and Operations,”
Nature
Neuroscience 15 (2012):
511–517.
(2)
G. Baggio, P. Cherubini, D.
Pischedda, A. Blumenthal, J. D. Haynes, and C.
Reverberi, “Multiple Neural Representations of
Elementary Logical Connectives,” NeuroImage 135 (2016):
300–310.
(3)
J. Holler and S. C. Levinson,
“Multimodal Language Processing in Human
Communication,” Trends in
Cognitive Sciences 23 (2019): 639–652;
F. Mollica, M. Siegelman, E. Diachek, S. T.
Piantadosi, Z. Mineroff, R. Futrell, H. Kean, P.
Qian, and E. Fedorenko, “Composition Is the Core
Driver of the Language- Selective Network,” Neurobiology of Language
1, no. 1 (2020): 104–134.
(4)
M. H. Christiansen and N. Chater,
Creating Language:
Integrating Evolution, Acquisition, and
Processing (Cambridge, MA: MIT Press,
2016).