ملاحظات

الفصل الأول: مقدمة تاريخية

(1)
D. P. McCabe and A. D. Castel. “Seeing Is Believing: The Effect of Brain Images on Judgments of Scientific Reasoning,” Cognition 107 (2008): 343–352; D. S. Weisberg, F. C. Keil, J. Goodstein, E. Rawson, and J. R. Gray, “The Seductive Allure of Neuroscience Explanations,” Journal of Cognitive Neuroscience 20 (2008): 470–477; P. Legrenzi and C. Umiltà, Neuromania: On the Limits of Brain Science (New York: Oxford University Press, 2011).
(2)
W. J. M. Levelt, A History of Psycholinguistics: The Pre-Chomskyan Era (New York: Oxford University Press, 2012); P. Eling, “Neurolinguistics, History of,” in International Encyclopedia of the Social and Behavioral Sciences, 2nd ed., ed. James Wright, 16: 678–689 (Amsterdam: Elsevier, 2015); G. -J. Rutten, The Broca-Wernicke Doctrine: A Historical and Clinical Perspective on Localization of Language Functions (Berlin: Springer, 2017).
(3)
Eling, “Neurolinguistics, History of,” 680-681.
(4)
Eling, “Neurolinguistics, History of,” 681.
(5)
Levelt, A History of Psycholinguistics, 53-58; Eling, “Neurolinguistics, History of,” 682; Rutten, The Broca-Wernicke Doctrine, 3-4.
(6)
F. J. Gall, Sur les Fonctions du Cerveau et sur Celles de Chacune de ses Parties (Ballière, 1822–1825).
(7)
Levelt, A History of Psycholinguistics, 56–59.
(8)
P. Broca, “Remarques sur le Siège de la Facultè du Langage Articulè, Suivies d’une Observation d’aphémie (Perte de la Parole),” Bulletin et Mémoires de la Société Anatomique de Paris 6 (1861b): 330–357.
(9)
P. Broca, “Perte de la Parole, Ramollissement Chronique et Destruction Partielle du Lobe Antérieur Gauche du Cerveau,” Bulletin de la Societe Anthropologique de Paris 2 (1861a): 235-238; Broca, “Remarques sur le Siège de la Faculté du Langage Articulé”; P. Broca, “Nouvelle Observation d’aphémie Produite par une Lesion de la Moitié Postérieure des Deuxième et Troisième Circonvolutions Frontales,” Bulletin et Memoires de la Societe Anatomique de Paris 6 (1861c): 398–407.
(10)
Broca, “Nouvelle observation d’aphémie produite.”
(11)
Levelt, A History of Psycholinguistics, 88.
(12)
Broca, “Perte de la Parole.”
(13)
C. Wernicke, C. (1874). “Der Aphasische Symptomencomplex: Eine Psychologische Studie auf Anatomischer Basis,” in Wernicke’s Works on Aphasia: A Sourcebook and Review, ed. G. H. Eggert, 91–145 (The Hague: Mouton, 1874).
(14)
Broca, “Remarques sur le Siège de la Faculté du Langage Articulé.”
(15)
Levelt, A History of Psycholinguistics, 70–73.
(16)
Levelt, A History of Psycholinguistics, 72-73.
(17)
Levelt, A History of Psycholinguistics, 79.
(18)
L. Lichtheim, “Über Aphasie,” Deutsches Archiv für Klinische Medizin 36 (1885): 204–268. Also see L. Lichtheim, “On Aphasia,” Brain 7 (1885): 433–484.
(19)
N. Geschwind, “The Organization of Language and the Brain,” Science 170 (1970): 940–944.
(20)
F. de Saussure, Cours de Linguistique Générale (1916). Paris: Payot. A Sign Links “A Concept and an Acoustic Image” (Two Mental Entities). This Idea Agrees Well with Earlier Notions Used by Neurologists and Biologists. For Example, We Find Similar Ideas in Broca (“Remarques sur le Siege de la Faculte du Langage Articule”) and C. Darwin, The Descent of Man, and Selection in Relation to Sex (1871). London: John Murray. See chapter 10.
(21)
Saussure, Cours de Linguistique Générale.
(22)
Eling, “Neurolinguistics, History of,” 683.
(23)
“Any Description and Classification of Aphasic Syndromes Must Begin with the Question of What Aspects of Language Are Impaired,” Is the Programmatic Statement from R. Jakobson, “Two Aspects of Language and Two Types of Aphasic Disturbances,” in Fundamentals of Language, ed. R. Jakobson and M. Halle (The Hague: Mouton, 1956). For Further Discussion, See also R. Jakobson, “Towards a Linguistic Typology of Aphasic Impairments,” in Disorders of Language, ed. A. V. S. de Reuck and M. O’Connor (Boston: Little, Brown, 1964), 21–41, and R. Jakobson, “Toward a Linguistic Classification of Aphasic Impairments,” Selected Writings II (The Hague: Mouton, 1970).
(24)
Levelt, A History of Psycholinguistics, 405: “Jakobson Remained an Exception in Aphasiology until the ‘Cognitive Revolution.’ The Field Suffered from a Persistent Lack of Linguistic Sophistication in Both Method and Theory.”
(25)
N. Chomsky, Syntactic Structures (The Hague: Mouton, 1957). See also his Papers from the 1955–1960 Period.
(26)
N. Chomsky, Aspects of the Theory of Syntax (Cambridge, MA: MIT Press 1965).
(27)
H, Gardner, The Mind’s New Science: A History of the Cognitive Revolution (New York: Basic Books, 1987); G. A. Miller, “The Cognitive Revolution: A Historical Perspective,” Trends in Cognitive Sciences 7 (2003): 141–144.
(28)
Levelt, A History of Psycholinguistics, 18.
(29)
J. Cohen-Cole, The Open Mind: Cold War Politics and the Sciences of Human Nature (Chicago: University of Chicago Press, 2014).
(30)
G. A. Miller and K. O. McKean, “A Chronometric Study of Some Relations between Sentences,” Quarterly Journal of Experimental Psychology 16 (1964): 297–308; Y. Grodzinsky, “The Neurology of Syntax: Language Use without Broca's Area,” Behavioral and Brain Sciences 23 (2000): 1–21.
(31)
E. C. Trager, “The Field of Neurolinguistics,” Studies in Linguistics 15 (1961): 70–71. See also the early works by Alexander Luria and others.
(32)
E. H. Lenneberg, Biological Foundations of Language (New York: Wiley, 1967).
(33)
H. A. Whitaker, Editorial. Brain and Language 1 (1974): iii-iv.
(34)
M. Kutas and S. A. Hillyard, “Reading Senseless Sentences: Brain Potentials Reflect Semantic Incongruity,” Science 207 (1980): 203–205; L. Osterhout and P. J. Holcomb, “Event-Related Brain Potentials Elicited by Syntactic Anomaly,” Journal of Memory and Language 31 (1992): 785–806; P. Hagoort, C. Brown, and J. Groothusen, “The Syntactic Positive Shift (SPS) as an ERP Measure of Syntactic Processing,” Language and Cognitive Processes 8 (1993): 439–483.
(35)
M. Mather, J. T. Cacioppo, and N. Kanwisher, “Introduction to the Special Section: 20 Years of fMRI—What Has it Done for Understanding Cognition?” Perspectives on Psychological Science 8 (2013): 41–43.
(36)
M. A. Just, P. A. Carpenter, T. A. Keller, W. F. Eddy, and K. R. Thulborn, “Brain Activation Modulated by Sentence Comprehension,” Science 274 (1996): 114–116.

الفصل الثاني: تعيين اللغة في زمن الدماغ

(1)
This Is True in Most Circumstances, but People with Speech Disorders, for Example, Do Experience Delays between Intention and Production. The Same Can be Said for Second-Language Learners and Some Aphasic Patients.
(2)
J. Hirschberg and C. D. Manning, “Advances in Natural Language Processing,” Science 349 (2015): 261–266.
(3)
Meyer, D. E., A. M. Osman, D. E. Irwin, and S. Yantis, “Modern Mental Chronometry,” Biological Psychology 26, nos. 1–3 (1988): 3–67.
(4)
G. A. Miller and K. O. McKean, “A Chronometric Study of Some Relations between Sentences,” Quarterly Journal of Experimental Psychology 16 (1964): 297–308.
(5)
S. J. Luck and E. S. Kappenman, eds., The Oxford Handbook of Event-Related Potential Components (New York: Oxford University Press, 2011).
(6)
J. Bickle, “Revolutions in Neuroscience: Tool Development,” Frontiers in Systems Neuroscience 10 (2016): 24; D. Parker, “Kuhnian Revolutions in Neuroscience: The Role of Tool Development,” Biology and Philosophy 33, no. 3 (2018): 17.
(7)
W. J. Levelt, Speaking: From Intention to Articulation (Cambridge, MA: MIT Press, 1993); G. Hickok and D. Poeppel, “The Cortical Organization of Speech Processing,” Nature Reviews Neuroscience 8 (2017): 393; D. B. Fry, The Physics of Speech (Cambridge: Cambridge University Press, 1979).
(8)
P. J. Monahan, “Phonological Knowledge and Speech Comprehension,” Annual Review of Linguistics 4 (2018): 21–47.
(9)
D. Poeppel, C. Phillips, E. Yellin, H. A. Rowley, T. P. Roberts, and A. Marantz, “Processing of Vowels in Supratemporal Auditory Cortex,” Neuroscience Letters 221 (1997): 145–148.
(10)
T. H. Heinks-Maldonado, D. H. Mathalon, M. Gray, and J. M. Ford, “Fine-Tuning of Auditory Cortex during Speech Production,” Psychophysiology 42 (2005): 180–190.
(11)
D. Poeppel and P. J. Monahan, “Feedforward and Feedback in Speech Perception: Revisiting Analysis by Synthesis,” Language and Cognitive Processes 26 (2011): 935–951.
(12)
C. Phillips, T. Pellathy, A. Marantz, E. Yellin, K. Wexler, D. Poeppel, M. McGinnis, and T. Roberts, “Auditory Cortex Accesses Phonological Categories: An MEG Mismatch Study,” Journal of Cognitive Neuroscience 12 (2000): 1038–1055; C. Phillips, “Levels of Representation in the Electrophysiology of Speech Perception,” Cognitive Science 25 (2001): 711–731; M. T. Diaz and T. Y. Swaab, “Electrophysiological Differentiation of Phonological and Semantic Integration in Word and Sentence Contexts,” Brain Research 1146 (2007): 85–100.
(13)
V. Van Wassenhove, K. W. Grant, and D. Poeppel, “Visual Speech Speeds Up the Neural Processing of Auditory Speech,” Proceedings of the National Academy of Sciences 102 (2005): 1181-1186.
(14)
M. Kutas and K. D. Federmeier, “Thirty Years and Counting: Finding Meaning in the N400 Component of the Event-Related Brain Potential (ERP),” Annual Review of Psychology 62 (2011): 621–647.
(15)
M. Kutas and S. A. Hillyard, “Reading Senseless Sentences: Brain Potentials Reflect Semantic Incongruity,” Science 207 (1980): 203–205; M. Kutas and S. A. Hillyard, “Brain Potentials during Reading Reflect Word Expectancy and Semantic Association,” Nature 307 (1984): 161.
(16)
D. Embick, and D. Poeppel, “Towards a Computational(ist) Neurobiology of Language: Correlational, Integrated and Explanatory Neurolinguistics,” Language, Cognition and Neuroscience 30 (2015): 357–366.
(17)
Kutas and Federmeier, “Thirty Years and Counting”; G. Baggio and P. Hagoort, “The Balance between Memory and Unification in Semantics: A Dynamic Account of the N400,” Language and Cognitive Processes 26 (2011): 1338–1367.
(18)
L. Pylkkanen and A. Marantz, “Tracking the Time Course of Word Recognition with MEG,” Trends in Cognitive Sciences 7 (2003): 187–189.
(19)
J. J. Van Berkum, “Understanding Sentences in Context: What Brain Waves Can Tell Us,” Current Directions in Psychological Science 17 (2008): 376–380; L. Pylkkänen, “Composition of Complex Meaning: Interdisciplinary Perspectives on the Left Anterior Temporal Lobe,” in Neurobiology of Language, ed. G. Hickok and S. L. Small, 621–631 (Orlando, FL: Academic Press, 2016); G. Baggio, Meaning in the Brain (Cambridge, MA: MIT Press, 2018).
(20)
L. Osterhout and P. J. Holcomb, “Event-Related Brain Potentials Elicited by Syntactic Anomaly,” Journal of Memory and Language 31 (1992): 785–806; P. Hagoort, C. Brown, and J. Groothusen, “The Syntactic Positive Shift (SPS) as an ERP Measure of Syntactic Processing,” Language and Cognitive Processes 8 (1993): 439–483.
(21)
The answer is was. This ERP result is from L. Osterhout and P. J. Holcomb, “Event-Related Brain Potentials Elicited by Syntactic Anomaly,” Journal of Memory and Language 31 (1992): 785–806.
(22)
P. Hagoort, “How the Brain Solves the Binding Problem for Language: A Neurocomputational Model of Syntactic Processing,” NeuroImage 20 (2003); S18–S29; A. D. Friederici, “Towards a Neural Basis of Auditory Sentence Processing,” Trends in Cognitive Sciences 6 (2002), 78–84.
(23)
A. Kim and L. Osterhout, “The Independence of Combinatory Semantic Processing: Evidence from Event-Related Potentials,” Journal of Memory and Language 52 (2005): 205–225; G. R. Kuperberg, “Neural Mechanisms of Language Comprehension: Challenges to Syntax,” Brain Research 1146 (2007): 23–49; O. Michalon and G. Baggio, “Meaning-Driven Syntactic Predictions in a Parallel Processing Architecture: Theory and Algorithmic Modeling of ERP Effects,” Neuropsychologia 131 (2019): 171–183.
(24)
S. Crain and M. Steedman, “On Not Being Led Up the Garden Path: The Use of Context by the Syntactic Processor,” in Natural Language Parsing: Psychological, Computational and Theoretical Perspectives, eds. David R. Dowty, Arnold Zwicky, and Lauri Karttunen (Cambridge: Cambridge University Press, 1985).
(25)
Friederici, “Towards a Neural Basis”; Hagoort, “How the Brain Solves the Binding Problem”; K. Steinhauer and J. E Drury, “On the Early Left-Anterior Negativity (ELAN) in Syntax Studies,” Brain and Language 120 (2012): 135–162.
(26)
For a recent study, see L. A. Fromont, K. Steinhauer, and P. Royle, “Verbing Nouns and Nouning Verbs: Using a Balanced Design Provides ERP Evidence against ‘Syntax-First’ Approaches to Sentence Processing,” PLoS One 15 (2020): e0229169.

الفصل الثالث: تعيين اللغة في حيز الدماغ

(1)
J. A. Fodor, “Diary,” London Review of Books 21 (1999): 68–69, https://www .lrb.co.uk/v21/n19/jerry-fodor/diary.
(2)
S. Dehaene and L. Cohen, “Cultural Recycling of Cortical Maps,” Neuron 56 (2007): 384–398.
(3)
N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, “Neurophysiological Investigation of the Basis of the fMRI Signal,” Nature, 412 (2001): 150; N. K. Logothetis, “The Ins and Outs of fMRI Signals,” Nature Neuroscience 10 (2007): 1230.
(4)
H. H. Clark, Using Language (Cambridge: Cambridge University Press, 1996); P. Hagoort, “The Neurobiology of Language beyond Single-Word Processing,” Science 366 (2019): 55–58.
(5)
G. Baggio, Meaning in the Brain (Cambridge, MA: MIT Press, 2018).
(6)
Wernicke’s area, according to standard, classical definitions, is approxi-mately the posterior half or third of the STG. Functionally, it is a larger portion of temporal cortex if one defines it as the region that, when damaged, will yield Wernicke’s aphasia. On this view, Wernicke’s area would be a bigger region than shown in the figure.
(7)
E. F. Chang, J. W. Rieger, K. Johnson, M. S. Berger, N. M. Barbaro, and R. T. Knight, “Categorical Speech Representation in Human Superior Temporal Gyrus,” Nature Neuroscience 13 (2010): 1428; A. Flinker, E. F. Chang, N. M., Barbaro, M. S. Berger, and R. T. Knight, “Centimeter Language Organization in the Human Temporal Lobe,” Brain and Language 117 (2011): 103–109; H. G. Yi, M. K. Leonard, and E. F. Chang, “The Encoding of Speech Sounds in the Superior Temporal Gyrus,” Neuron 102 (2019): 1096–1110.
(8)
J. P. Rauschecker and S. K. Scott, “Maps and Streams in the Auditory Cortex: Nonhuman Primates Illuminate Human Speech Processing,” Nature Neuroscience 12 (2009): 718.
(9)
P. W. Hullett, L. S. Hamilton, N. Mesgarani, C. E. Schreiner, and E. F. Chang, “Human Superior Temporal Gyrus Organization of Spectrotemporal Modulation Tuning Derived from Speech Stimuli,” Journal of Neuroscience 36 (2016): 2014–2026; L. S. Hamilton, E. Edwards, and E. F. Chang, “A Spatial Map of Onset and Sustained Responses to Speech in the Human Superior Temporal Gyrus,” Current Biology 28 (2018): 1860–1871; K. Jasmin, C. F. Lima, and S. K. Scott, “Understanding Rostral-Caudal Auditory Cortex Contributions to Auditory Perception,” Nature Reviews Neuroscience 20 (2019): 425–434; D. Poeppel, “The Analysis of Speech in Different Temporal Integration Windows: Cerebral Lateralization as ‘Asymmetric Sampling in Time,’” Speech Communication 41 (2003): 245–255; K. Okada, F. Rong, J. Venezia, W. Matchin, I. H. Hsieh, K. Saberi, J. T. Serences, and G. Hickok, “Hierarchical Organization of Human Auditory Cortex: Evidence from Acoustic Invariance in the Response to Intelligible Speech,” Cerebral Cortex 20 (2010): 2486–2495.
(10)
J. Binder, “The New Neuroanatomy of Speech Perception,” Brain 123 (2000): 2371–2372; J. R. Binder, “The Wernicke Area: Modern Evidence and a Reinterpretation,” Neurology 85 (2015): 2170–2175; J. R. Binder, “Current Controversies on Wernicke’s Area and Its Role in Language,” Current Neurology and Neuroscience Reports 17 (2017): 58; Gregory Hickok Reviews the Evidence Here: https://youtu.be/ShtQVAsfhSQ.
(11)
J. M. Rodd, M. H. Davis, and I. S. Johnsrude, “The Neural Mechanisms of Speech Comprehension: fMRI Studies of Semantic Ambiguity,” Cerebral Cortex 15 (2005): 1261–1269; P. Hagoort, G. Baggio, and R. M. Willems, “Semantic Unification,” in The Cognitive Neurosciences, 4th ed., ed. Michael S. Gazzaniga, 819–836 (Cambridge, MA: MIT Press, 2009).
(12)
G. Hickok and D. Poeppel, “The Cortical Organization of Speech Processing,” Nature Reviews Neuroscience 8 (2007): 393; D. Ben Shalom and D. Poeppel, “Functional Anatomic Models of Language: Assembling the Pieces,” Neuroscientist 14 (2008): 119–127; Hagoort et al., “Semantic Unification”; D. Poeppel, K. Emmorey, G. Hickok, and L. Pylkkänen, “Towards a New Neurobiology of Language,” Journal of Neuroscience 32 (2012): 14125–14131.
(13)
M. MacSweeney, R. Campbell, B. Woll, M. J. Brammer, V. Giampietro, A. S. David, G. A. Calvert, and P. K. McGuire, “Lexical and Sentential Processing in British Sign Language,” Human Brain Mapping 27 (2006): 63–76; D. Poeppel, K. Emmorey, G. Hickok, and L. Pylkkänen, “Towards a New Neurobiology of Language,” Journal of Neuroscience 32 (2012): 14125–14131.
(14)
E. F., Lau, C. Phillips, and D. Poeppel, “A Cortical Network for Semantics: (De)Constructing the N400,” Nature Reviews Neuroscience 9 (2008): 920.
(15)
M. A. L., Ralph, E. Jefferies, E., K. Patterson, and T. T. Rogers, ‘The Neural and Computational Bases of Semantic Cognition,” Nature Reviews Neuroscience 18 (2017): 42–45; L. Pylkkänen, “The Neural Basis of Combinatory Syntax and Semantics,” Science 366 (2019): 62–66.
(16)
S. B. Eickhoff, S. Heim, K. Zilles, and K. Amunts, “A Systems Perspective on the Effective Connectivity of Overt Speech Production,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (2009): 2399–2421; N. Janssen and C. C. R. Mendieta, “The Dynamics of Speech Motor Control Revealed with Time-Resolved fMRI,” Cerebral Cortex 30, no. 1 (2019): 241–255; N. T. Sahin, S. Pinker, S. S. Cash, D. Schomer, and E. Halgren, “Sequential Processing of Lexical, Grammatical, and Phonological Information within Broca's Area,” Science 326 (2009): 445–449; P. Hagoort and W. J. Levelt, “The Speaking Brain,” Science 326 (2009): 372-373.
(17)
M. A. Just, P. A. Carpenter, T. A. Keller, W. F. Eddy, and K. R. Thulborn, ‘Brain Activation Modulated by Sentence Comprehension,” Science 274 (1996): 114–116; D. Embick, A. Marantz, Y. Miyashita, W. O'Neil, and K. L. Sakai, “A Syntactic Specialization for Broca's Area,” Proceedings of the National Academy of Sciences 97 (2000): 6150–6154.
(18)
M. Catani, D. K. Jones, and D. H. Ffytche, “Perisylvian Language Networks of the Human Brain,” Annals of Neurology 57 (2005): 8–16; D. Saur, B. W. Kreher, S. Schnell, D. Kümmerer, P. Kellmeyer, M. S. Vry, R. Umarova, M. Musso, V. Glauche, S. Abel, and W. Huber, “Ventral and Dorsal Pathways for Language,” Proceedings of the National Academy of Sciences 105 (2008): 18035–18040; A. D. Friederici, Language in Our Brain: The Origins of a Uniquely Human Capacity (Cambridge, MA: MIT Press, 2017).
(19)
N. Mesgarani, C. Cheung, K. Johnson, and E. F. Chang, “Phonetic Feature Encoding in Human Superior Temporal Gyrus,” Science 343 (2014): 1006–1010. See also E. F. Chang, J. W. Rieger, K. Johnson, M. S. Berger, N. M. Barbaro, and R. T. Knight, “Categorical Speech Representation in Human Superior Temporal Gyrus,” Nature Neuroscience 13 (2010): 1428.
(20)
E. Zaccarella, L. Meyer, M. Makuuchi, and A. D. Friederici, “Building by Syntax: The Neural Basis of Minimal Linguistic Structures,” Cerebral Cortex 27 (2017): 411–421; A. D. Friederici, N. Chomsky, R. C. Berwick, A. Moro, and J. J. Bolhuis, “Language, Mind and Brain,” Nature Human Behaviour 1 (2017): 713–722; E. Zaccarella, M. Schell, and A. D. Friederici, “Reviewing the Functional Basis of the Syntactic Merge Mechanism for Language: A Coordinate-Based Activation Likelihood Estimation Meta-Analysis,” Neuroscience and Biobehavioral Reviews 80 (2017): 646–656.
(21)
T. M. Snijders, T. Vosse, G. Kempen, J. J. Van Berkum, K. M. Petersson, and P. Hagoort, “Retrieval and Unification of Syntactic Structure in Sentence Comprehension: An fMRI Study Using Word-Category Ambiguity,” Cerebral Cortex 19 (2008), 1493–1503; Z. Zhu, P. Hagoort, J. X. Zhang, G. Feng, H. C. Chen, M. Bastiaansen, and Z. Wang, “The Anterior Left Inferior Frontal Gyrus Contributes to Semantic Unification,” NeuroImage 60 (2012): 2230–2237.
(22)
M. Ben-Shachar, D. Palti, and Y. Grodzinsky, “Neural Correlates of Syntactic Movement: Converging Evidence from Two fMRI Experiments,” NeuroImage 21 (2004), 1320–1336.
(23)
C. Rogalsky and G. Hickok, “The Role of Broca's Area in Sentence Comprehension,” Journal of Cognitive Neuroscience 23 (2011): 1664–1680.
(24)
Y. Grodzinsky and A. Santi, “The Battle for Broca’s Region,” Trends in Cognitive Sciences 12 (2008): 474–480; R. M. Willems and P. Hagoort, “Broca’s Region: Battles Are Not Won by Ignoring Half of the Facts,” Trends in Cognitive Sciences 13 (2009): 101.
(25)
Pylkkänen, “The Neural Basis of Combinatory Syntax and Semantics.”
(26)
P. Hagoort and S. C. Levinson, “Neuropragmatics,” in The Cognitive Neurosciences, 667–674 (Cambridge, MA: MIT Press, 2014); P. Hagoort and P. Indefrey, “The Neurobiology of Language beyond Single Words,” Annual Review of Neuroscience 37 (2014): 347–362; Baggio, Meaning in the Brain.
(27)
A. M. Rapp, D. E. Mutschler, and M. Erb, “Where in the Brain Is Non-Literal Language? A Coordinate-Based Meta-Analysis of Functional Magnetic Resonance Imaging Studies,” NeuroImage 63 (2012): 600–610; I. C. Bohrn, U. Altmann, and A. M. Jacobs, “Looking at the Brains behind Figurative Language—A Quantitative Meta-Analysis of Neuroimaging Studies on Metaphor, Idiom, and Irony Processing,” Neuropsychologia 50 (2012): 2669–2683.

الفصل الرابع: نماذج اللغة في الدماغ

(1)
B. C. Van Fraassen, Scientific Representation: Paradoxes of Perspective (New York: Oxford University Press, 2010).
(2)
K. R. Popper, “Science as Falsification,” Conjectures and Refutations 1 (1963): 33–39; I. Lakatos, “Criticism and the Methodology of Scientific Research Programmes,” Proceedings of the Aristotelian Society 69 (1968): 149–86; I. Lakatos, ‘Falsification and the Methodology of Scientific Research Programmes,” in Can Theories Be Refuted?, ed. Sandra G. Harding, 205–259 (Dordrecht: Springer, 1976); D. Deutsch, The Beginning of infinity: Explanations That Transform the World (London: Penguin UK, 2011).
(3)
D. Marr, Vision: A Computational investigation into the Human Representation and Processing of Visual information (Cambridge, MA: MIT Press, 2010).
(4)
R. Jackendoff, Foundations of Language: Brain, Meaning, Grammar, Evolution (New York: Oxford University Press, 2002); P. W. Culicover and R. Jackendoff, Simpler Syntax (New York: Oxford University Press, 2005), and “The Simpler Syntax Hypothesis,” Trends in Cognitive Sciences 10 (2006): 413–418; G. R. Kuperberg, “Neural Mechanisms of Language Comprehension: Challenges to Syntax,” Brain Research 1146 (2007): 23–49; G. Baggio, Meaning in the Brain (Cambridge, MA: MIT Press, 2018).
(5)
G. Lakoff, Women, Fire, and Dangerous Things (Chicago: University of Chicago Press, 2008); H. Kamp, J. Van Genabith, and U. Reyle, “Discourse Representation Theory,” in Handbook of Philosophical Logic, eds. Dov Gabbay and Franz Guenthner 125–394 (Berlin: Springer, 2011); L. Horn, “Implicature,” in Routledge Companion to Philosophy of Language, ed. Delia Graff Fara and Gillian Russell, 75-88 (New York: Routledge, 2013); R. Stalnaker, Context (New York: Oxford University Press, 2014).
(6)
W. J. Levelt, A History of Psycholinguistics: The Pre-Chomskyan Era (New York: Oxford University Press, 2013).
(7)
P. Warren, Introducing Psycholinguistics (Cambridge: Cambridge University Press, 2012); G. Altmann, “Ambiguity, Parsing Strategies, and Computational Models,” Language and Cognitive Processes 3 (1988): 73–97; G. T. Altmann, ‘The Language Machine: Psycholinguistics in Review,” British Journal of Psychology 92 (2001): 129–170.
(8)
F. Ferreira, K. G., Bailey, and V. Ferraro, “Good-Enough Representations in Language Comprehension,” Current Directions in Psychological Science 11 (2002): 11-15; M. H. Christiansen and N. Chater, Creating Language: Integrating Evolution, Acquisition, and Processing (Cambridge, MA: MIT Press, 2016).
(9)
For a discussion, see I. Bornkessel-Schlesewsky and M. Schlesewsky, “Sentence Processing: Toward a Neurobiological Approach,” in The Oxford Handbook of Neurolinguistics, ed. Niels O. Schiller and Greig I. de Zubicaray, 676–709 (New York: Oxford University Press, 2019).
(10)
A. D. Friederici, Language in our Brain: The Origins of a Uniquely Human Capacity (Cambridge, MA: MIT Press, 2017).
(11)
Some points of contact are discussed in A. D. Friederici, N. Chomsky, R. C. Berwick, A. Moro, and J. J. Bolhuis, “Language, Mind and Brain,” Nature Human Behaviour 1 (2017): 713–722.
(12)
P. Hagoort, “On Broca, Brain, and Binding: A New Framework,” Trends in Cognitive Sciences 9 (2005): 416–423, and “MUC (Memory, Unification, Control): A Model on the Neurobiology of Language beyond Single Word Processing,” in Neurobiology of Language, ed. Gregory Hickok and Steven L. Small, 339–347 (Orlando, FL: Academic Press, 2016).
(13)
H. D. Xiang, H. M.Fonteijn, D. G. Norris, and P. Hagoort, “Topographical Functional Connectivity Pattern in the Perisylvian Language Networks,” Cerebral Cortex 20 (2009), 549–560.
(14)
E. C. Ferstl, J. Neumann, C. Bogler, and D. Y. Von Cramon, “The Extended Language Network: A Meta-Analysis of Neuroimaging Studies on Text Comprehension,” Human Brain Mapping 29 (2008): 581–593; I. C. Bohrn, U. Altmann, and A. M. Jacobs, “Looking at the Brains behind Figurative Language—A Quantitative Meta-Analysis of Neuroimaging Studies on Metaphor, Idiom, and Irony Processing,” Neuropsychologia 50 (2012), 2669–2683; A. M. Rapp, D. E. Mutschler, and M. Erb, “Where in the Brain Is Nonliteral Language? A Coordinate-Based Meta-Analysis of Functional Magnetic Resonance Imaging Studies,” Neuroimage 63 (2012): 600–610; P. Hagoort and P. Indefrey, “The Neurobiology of Language beyond Single Words,” Annual Review of Neuroscience 37 (2014): 347–362; Baggio, Meaning in the Brain.
(15)
R. Jackendoff, Foundations of Language: Brain, Meaning, Grammar, Evolution (New York: Oxford University Press, 2002); Baggio, Meaning in the Brain.
(16)
G. Hickok and D. Poeppel, “Dorsal and Ventral Streams: A Framework for Understanding Aspects of the Functional Anatomy of Language,” Cognition 92, nos. 1-2 (2004): 67–99; G. Hickok and D. Poeppel, “The Cortical Organization of Speech Processing,” Nature Reviews Neuroscience 8 (2007): 393.
(17)
D. Poeppel, K. Emmorey, G. Hickok, and L. Pylkkänen, “Towards a New Neurobiology of Language,” Journal of Neuroscience 32 (2012): 14125–14131.
(18)
E. Jonas and K. P. Kording, “Could a Neuroscientist Understand a Microprocessor?” PLoS Computational Biology 13 (2017): e1005268. For an Early Discussion of Computational Models in Neurolinguistics, see M. A. Arbib and D. Caplan, “Neurolinguistics Must Be Computational,” Behavioral and Brain Sciences 2 (1979): 449–460 (See Also the Commentary Section).
(19)
On Composition, See A. E. Martin and L. A. Doumas, “A Mechanism for the Cortical Computation of Hierarchical Linguistic Structure,” PLoS Biology 15 (2017): e2000663; A. E. Martin and L. A. Doumas, “Predicate Learning in Neural Systems: Using Oscillations to Discover Latent Structure,” Current Opinion in Behavioral Sciences 29 (2019): 77–83; A. E. Martin and G. Baggio, Modeling Meaning Composition from Formalism to Mechanisms,” Philosophical Transactions of the Royal Society B 375 (2019): 20190298.

الفصل الخامس: نمو شبكات اللغة

(1)
G. F. Marcus, S. Pinker, M. Ullman, M. Hollander, T. J. Rosen, F. Xu, and H. Clahsen, “Overregularization in Language Acquisition,” Monographs of the Society for Research in Child Development 57 (1992): i, iii, v-vi, 1–178.
(2)
R. Ruhland and P. van Geert, “Jumping into Syntax: Transitions in the Development of Closed Class Words,” British Journal of Developmental Psychology 16 (1998): 65–95.
(3)
For example, See the Speech and Language Developmental Milestones of the US National Institutes of Health: www.nidcd.nih.gov/health/speech-and-language.
(4)
According to a Recent Estimate, “The Average English-Speaking Adult Has Learned 12.5 Million Bits of Information [Less than 1.5 Megabytes], the Majority of which Is Lexical Semantics”; F. Mollica and S. T. Piantadosi, “Humans Store about 1.5 Megabytes of Information during Language Acquisition,” Royal Society Open Science 6 (2019): 181393.
(5)
The Fact That This Is Not How Computers and Programming Work Suggests, Again, That the Computing Metaphor Is Not Quite Right as a Model of the Mind.
(6)
P. K. Kuhl, “Early Language Acquisition: Cracking the Speech Code,” Nature Reviews Neuroscience 5 (2004): 831–843; P. K. Kuhl, “Brain Mechanisms in Early Language Acquisition,” Neuron 67 (2010): 713–727.
(7)
G. Dehaene-Lambertz and E. S. Spelke, “The Infancy of the Human Brain,” Neuron 88 (2015): 93–109; A. D. Friederici, “Neurophysiological Markers of Early Language Acquisition: From Syllables to Sentences,” Trends in Cognitive Sciences 9 (2005): 481–488; Kuhl, “Early Language Acquisition.”
(8)
R. A. Thompson and C. A. Nelson, “Developmental Science and the Media: Early Brain Development,” American Psychologist 56 (2001): 5; G. Dehaene-Lambertz, L. Hertz-Pannier, and J. Dubois, “Nature and Nurture in Language Acquisition: Anatomical and Functional Brain-Imaging Studies in Infants,” Trends in Neuroscience 29 (2006): 367–373; G. Dehaene-Lambertz, L. Hertz-Pannier, J. Dubois, and S. Dehaene, “How Does Early Brain Organization Promote Language Acquisition in Humans?” European Review 16 (2008): 399–411.
(9)
Y. Zhang, P. K. Kuhl, T. Imada, M. Kotani, and Y. I. Tohkura, “Effects of Language Experience: Neural Commitment to Language-Specific Auditory Patterns,” Neuroimage 26 (2005): 703–720; P. Kuhl and M. Rivera-Gaxiola, Neural Substrates of Language Acquisition,” Annual Review of Neuroscience 31 (2008) : 511–534.
(10)
E. Bergelson and D. Swingley, “At 6-9 Months, Human Infants Know the Meanings of Many Common Nouns,” Proceedings of the National Academy of Sciences 109 (2012): 3253–3258; E. Bergelson and R. N. Aslin, “Nature and Origins of the Lexicon in 6-Mo-Olds,” Proceedings of the National Academy of Sciences 114 (2017): 12916–12921.
(11)
Z. Káldy and N. Sigala, ‘The Neural Mechanisms of Object Working Memory: What Is Where in the Infant Brain?” Neuroscience and Biobehavioral Reviews 28 (2004): 113–121; K. Grill-Spector, G. Golarai, and J. Gabrieli, “Developmental Neuroimaging of the Human Ventral Visual Cortex,” Trends in Cognitive Sciences 12 (2008): 152–162; L. B. Smith, “It's All Connected: Pathways in Visual Object Recognition and Early Noun Learning,” American Psychologist 68 (2013): 618.
(12)
A. Qiu, S. Mori, and M. I. Miller, “Diffusion Tensor Imaging for Under-standing Brain Development in Early Life,” Annual Review of Psychology 66 (2015): 853–876.
(13)
M. Frank, M., Braginsky, D. Yurovsky and V. Marchman, Variability and Consistency in Early Language Learning: The Wordbank Project (Cambridge, MA: MIT Press, 2021). See also http://wordbank.stanford.edu.
(14)
J. Franck, S. Millotte, A. Posada, and L. Rizzi, “Abstract Knowledge of Word Order by 19 Months: An Eye-Tracking Study,” Applied Psycholinguistics 34 (2013): 323–336.
(15)
See, among Others, G. F. Marcus, S. Vijayan, S. B. Rao, and P. M. Vishton, “Rule Learning by Seven-Month-Old Infants,” Science 283 (1999): 77–80; J. Gervain, M. Nespor, R. Mazuka, R. Horiem, and J. Mehler, “Bootstrapping Word Order in Prelexical Infants: A Japanese-Italian Cross-Linguistic Study,” Cognitive Psychology 1 (2008): 56–74; J. Gervain, and J. F. Werker, “Prosody Cues Word Order in 7-Month-Old Bilingual Infants,” Nature Communications 4 (2013): 1490; S. Benavides-Varela and J. Gervain, “Learning Word Order at Birth: A NIRS Study,” Developmental Cognitive Neuroscience 25 (2017): 198–208.
(16)
S. R. Waxman and D. B. Markow, “Words as Invitations to Form Categories: Evidence from 12-to 13-Month-Old Infants,” Cognitive Psychology 29 (1995): 257–302; B. Höhle, J. Weissenborn, D. Kiefer, A. Schulz, and M. Schmitz, ‘Functional Elements in Infants’ Speech Processing: The role of Determiners in the Syntactic Categorization of Lexical Elements,” Infancy 5 (2004): 341–353; Y. Kedar, M. Casasola, and B. Lust, “Getting There Faster: 18-and 24 Month-Old Infants’ Use of Function Words to Determine Reference,” Child Development 77 (2006): 325–338; A. Christophe, S. Millotte, S Bernal, and J. Lidz, “Bootstrapping Lexical and Syntactic Acquisition,” Language and Speech 51 (2008): 61–75.
(17)
R. Jackendoff, “A Parallel Architecture Perspective on Language Processing,” Brain Research 1146 (2007): 2–22.
(18)
E. Morgan, A. van der Meer, M. Vulchanova, D. E. Blasi, and G. Baggio, Meaning before Grammar: A Review of ERP Experiments on the Neurodevelopmental Origins of Semantic Processing,” Psychonomic Bulletin and Review 27 (2020): 441–464.

الفصل السادس: الدماغ وازدواج اللغة

(1)
F. Grosjean, “Neurolinguists, Beware! The Bilingual Is Not Two Monolinguals in One Person,” Brain and Language 36 (1989): 3–15.
(2)
F. Grosjean, Studying Bilinguals (New York: Oxford University Press, 2008).
(3)
E. L Newport, D. Bavelier, and H. J. Neville, “Critical Thinking about Critical Periods: Perspectives on a Critical Period for Language Acquisition,” in Language, Brain and Cognitive Development: Essays in Honor of Jacques Mehler, ed. E. Dupoux, 481–502 (Cambridge, MA: MIT Press, 2001); M. S. Thomas and M. H. Johnson, “New Advances in Understanding Sensitive Periods in Brain Development,” Current Directions in Psychological Science 17 (2008): 1–5.
(4)
E. I. Knudsen, “Sensitive Periods in the Development of the Brain and Behavior,” Journal of Cognitive Neuroscience 16 (2004): 1412–1425; H. B. Uylings, ‘Development of the Human Cortex and the Concept of ‘Critical’ or ‘Sensitive’ Periods,” Language Learning 56 (2006): 59–90.
(5)
Newport et al. “Critical Thinking about Critical Periods”; H. J. Neville, H. J., D. L. Mills, and D. S. Lawson, “Fractionating Language: Different Neural Subsystems with Different Sensitive Periods,” Cerebral Cortex 2 (1992): 244–258; R. Slabakova, “Is There a Critical Period for Semantics?” Second Language Research 22 (2006): 302-338; J. Rothman, “Why All Counter-Evidence to the Critical Period Hypothesis in Second Language Acquisition Is Not Equal or Problematic,” Language and Linguistics Compass 2 (2008): 1063–1088.
(6)
Thomas and Johnson, “New Advances in Understanding”; A. E. Hernandez, The Bilingual Brain (New York: Oxford University Press, 2013); S. Sulpizio, N. Del Maschio, D. Fedeli, and J. Abutalebi, “Bilingual Language Processing: A Meta-Analysis of Functional Neuroimaging Studies,” Neuroscience and Biobehavioral Reviews 108 (2020): 834–853.
(7)
L. Osterhout, A. Poliakov, K. Inoue, J. McLaughlin, G. Valentine, I. Pit- kanen, C. Frenck-Mestre, and J. Hirschensohn, “Second-Language Learning and Changes in the Brain,” Journal of Neurolinguistics 21 (2008): 509–521.
(8)
D. Klein, K. Mok, J. K. Chen, and K. E. Watkins, “Age of Language Learning Shapes Brain Structure: A Cortical Thickness Study of Bilingual and Monolingual Individuals,” Brain and Language 131 (2014): 20–24.
(9)
Sulpizio et al., “Bilingual Language Processing.”
(10)
C. D. Martin, B. Dering, E. M. Thomas, and G. Thierry, “Brain Potentials Reveal Semantic Priming in Both the ‘Active’ and the ‘Non-Attended’ Language of Early Bilinguals,” NeuroImage 47 (2009): 326–333.
(11)
J. Abutalebi and D. Green, “Bilingual Language Production: The Neurocognition of Language Representation and Control,” Journal of Neurolinguistics 20 (2007): 242-275; Hernandez, The Bilingual Brain; C. Reverberi, A. K. Kuhlen, S. Seyed-Allaei, R. S. Greulich, A. Costa, J. Abutalebi, and J. D. Haynes, “The Neural Basis of Free Language Choice in Bilingual Speakers: Disentangling Language Choice and Language Execution,” NeuroImage 177 (2018): 108–116.
(12)
A. S. Dick, N. L. Garcia, S. M. Pruden, W. K. Thompson, S. W. Hawes, M. T. Sutherland, M. C. Riedel, A. R. Laird, and R. Gonzalez, “No Evidence for a Bilingual Executive Function Advantage in the ABCD Study,” Nature Human Behaviour 3 (2019): 692–701.
(13)
E. Bialystok, F. I. Craik, and G. Luk, “Bilingualism: Consequences for Mind and Brain,” Trends in Cognitive Sciences 16 (2012): 240–250.

الفصل السابع: الدماغ وتعلم القراءة والكتابة

(1)
UNESCO Institute for Statistics Global Databases, 2019.
(2)
S. Dehaene, Reading in the Brain: The New Science of How We Read (New York: Penguin, 2009).
(3)
Hemianopia is a loss of vision in half of the visual field. Because Incoming Light Is Projected by the Lens of Each Eye such that Visual Field Images Are Inverted, the Left Half of Each Retina Receives Light from the Right Visual Field, and Vice Versa. The Left Half of Each Retina Is Connected to the Left Occipital (Visual) Cortex, and the Right Halves Are Wired up to the Right Occipital Cortex. A Right Hemianopia Results from Damage to the Left Visual Cortex, and Vice Versa for a Left Hemianopia. See N. Geschwind, “The Anatomy of Acquired Disorders of Reading,” in Selected Papers on Language and the Brain, ed. Norman Geschwind, 1–17 (Berlin: Springer, 1974).
(4)
W. J. M. Levelt, A History of Psycholinguistics: The Pre-Chomskyan Era (New York: Oxford University Press, 2012.)
(5)
Dehaene, Reading in the Brain.
(6)
The Posterior Lesion Is Most Likely to Produce a Generalized Impairment of Reading, as This Area Is Involved in Processing all Types of Letter-Like Stimuli: If There Is Damage to the Posterior Fusiform Gyrus, Signals from Occipital Cortex Cannot Access Abstract Orthographic Representations. The Anterior Lesion Will Instead Damage only or Primarily N-Gram or Word Representations, Sparing the Patient’s Ability to Recognize Letters and Engage in Letter-by-Letter Reading.
(7)
S. Epelbaum, P. Pinel, R. Gaillard, C. Delmaire, M. Perrin, S. Dupont, S. Dehaene, and L. Cohen, “Pure Alexia as a Disconnection Syndrome: New Diffusion Imaging Evidence for an Old Concept,” Cortex 44 (2008): 962–974.
(8)
J. V. Baldo, N. Kacinik, C. Ludy, S. Paulraj, A. Moncrief, V. Piai, B. Curran, T. Herron, and N. F. Dronkers, “Voxel-Based Lesion Analysis of Brain Regions Underlying Reading and Writing,” Neuropsychologia 115 (2018): 51–59.
(9)
Dehaene, Reading in the Brain.
(10)
B. D. McCandliss, L. Cohen, and S. Dehaene, “The Visual Word Form Area: Expertise for Reading in the Fusiform Gyrus,” Trends in Cognitive Sciences 7 (2003): 293–299.
(11)
S. Dehaene, S., F. Pegado, L. W. Braga, P. Ventura, G. Nunes Filho, A. Jobert, G. Dehaene-Lambertz, R. Kolinsky, J. Morais, and L. Cohen, “How Learning to Read Changes the Cortical Networks for Vision and Language,” Science 330 (2010): 1359–1364.
(12)
S. Dehaene, L. Cohen, J., Morais, and R. Kolinsky, “Illiterate to Literate: Behavioural and Cerebral Changes Induced by Reading Acquisition,” Nature Reviews Neuroscience 16 (2015): 234–244.
(13)
W. P. Morgan, “A Case of Congenital Word Blindness,” British Medical Journal 2 (1896): 1378.
(14)
G. Silani, G., U. Frith, J. F. Demonet, F. Fazio, D. Perani, C. Price, C. D. Frith, and E. Paulesu, “Brain Abnormalities Underlying Altered Activation in Dyslexia: A Voxel Based Morphometry Study,” Brain 128 (2005): 2453–2461; U. Kuhl, N. E. Neef, I. Kraft, G. Schaadt, L. Dörr, J. Brauer, I. Czepezauer, B. Müller, A. Wilcke, H. Kirsten, F. Emmrich, J. Boltze, A. D. Friederici, and M. A. Skeide, “The Emergence of Dyslexia in the Developing Brain,” NeuroImage 211 (2020): 116633.

الفصل الثامن: علم اللغة العصبي

(1)
M. C. Dewan, A. Rattani, S. Gupta, R. E. Baticulon, Y. C. Hung, M. Punchak, A. Agrawal, A. O. Adeleye, M. G. Shrime, A. M. Rubiano, and J. V. Rosenfeld, “Estimating the Global Incidence of Traumatic Brain Injury,” Journal of Neurosurgery 130 (2018), 1080–1097; M. P. Lindsay, B. Norrving, R. L. Sacco, M. Brainin, W. Hacke, S. Martins, J. Pandian, and V. Feigin, “World Stroke Organization (WSO): Global Stroke Fact Sheet” (2019); S. T. Engelter, M. Gostynski, S. Papa, M. Frei, C. Born, V. Ajdacic-Gross, F. Gutzwiller, and P. A. Lyrer, “Epidemiology of Aphasia Attributable to First Ischemic Stroke: Incidence, Severity, Fluency, Etiology, and Thrombolysis,” Stroke 37 (2006): 1379–1384.
(2)
W. J. M. Levelt, A History of Psycholinguistics: The Pre-Chomskyan Era (New York: Oxford University Press, 2012; D. Vandenborre, E. Visch-Brink, and P. Mariën, “The Development of Modern Approaches to Aphasia: A Concise Overview,” International Journal of Rehabilitation Research 38 (2015): 189–194; N. F. Dronkers, M. V. Ivanova, and J. V. Baldo, “What Do Language Disorders Reveal about Brain-Language Relationships? from Classic Models to Network Approaches,” Journal of the International Neuropsychological Society 23 (2017): 741–754.
(3)
H. H. J. Kolk, “Multiple Route Plasticity,” Brain and Language 71 (2000): 129–131; H. Duffau, “The Error of Broca: From the Traditional Localizationist: Concept to a Connectomal Anatomy of Human Brain,” Journal of Chemical Neuroanatomy 89 (2018): 73–81.
(4)
Engelter et al., “Epidemiology of Aphasia.”
(5)
J. Fridriksson, J., D. B. den Ouden, A. E. Hillis, G. Hickok, C. Rorden, A. Basilakos, G. Yourganov, and L. Bonilha, “Anatomy of Aphasia Revisited,” Brain 141 (2018): 848–862.
(6)
M. C. Tate, G. Herbet, S. Moritz-Gasser, J. E. Tate, and H. Duffau, “Probabilistic Map of Critical Functional Regions of the Human Cerebral Cortex: Broca's Area Revisited,” Brain 137 (2014): 2773–2782.
(7)
M. Mesulam, “Primary Progressive Aphasia,”Annals of Neurology 49 (2001): 425–432.
(8)
J. D. Stefaniak, A. D. Halai, and M. A. L. Ralph, “The Neural and Neurocomputational Bases of Recovery from Post-Stroke Aphasia,” Nature Reviews Neurology 16 (2019): 43–55.
(9)
D. Saur and G. Hartwigsen, “Neurobiology of Language Recovery after Stroke: Lessons from Neuroimaging Studies,” Archives of Physical Medicine and Rehabilitation 93 (2012): S15–S25.
(10)
A. Stockert, M. Wawrzyniak, J. Klingbeil, K. Wrede, D. Kümmerer, G. Hartwigsen, C. P. Kaller, C. Weiller, and D. Saur, “Dynamics of Language Reorganization after Left Temporo-Parietal and Frontal Stroke,” Brain 143 (2020): 844–861.
(11)
Y. Grodzinsky, Theoretical Perspectives on Language Deficits (Cambridge, MA: MIT Press, 1990). For an Overview and Further Discussion, See J. Druks, Contemporary and Emergent Theories of Agrammatism: A Neurolinguistic Approach (London: Routledge/Psychology Press, 2016).
(12)
A. Caramazza and E. B. Zurif, “Dissociation of Algorithmic and Heuristic Processes in Language Comprehension: Evidence from Aphasia,” Brain and Language 3 (1976): 572–582.
(13)
For a recent hypothesis on the Division of Labor between Frontal and Temporal Regions, See W. Matchin and G. Hickok, “The Cortical Organization of Syntax,” Cerebral Cortex 30 (2020): 1481–1498.
(14)
P. Hagoort, M. Wassenaar, and C. Brown, “Real-Time Semantic Compensation in Patients with Agrammatic Comprehension: Electrophysiological Evidence for Multiple-Route Plasticity,” Proceedings of the National Academy of Sciences 100 (2003): 4340–4345.
(15)
For a discussion, see Druks, Contemporary and Emergent Theories.

الفصل التاسع: الوراثة العصبية للغة

(1)
C. D. Darlington, “The Genetic Component of Language,” Heredity 1 (1947): 269–286; L. Jenkins, “Language and Genetics,” Theoretical Linguistics 5 (1978): 77–82; R. C. Berwick and N. Chomsky, “Why Only Us: Recent Questions and Answers,” Journal of Neurolinguistics 43 (2017): 166–177.
(2)
For an Excellent and Readable Introduction to Human Genetics, See S. Mukherjee, The Gene: An Intimate History (New York: Penguin Books, 2016).
(3)
K. L. Grasby et al., “The Genetic Architecture of the Human Cerebral Cortex,” Science 367, no. 6484 (2020): eeaa6690. For background, see S. E. Fisher and S. C. Vernes, “Genetics and the Language Sciences,” Annual Review of Linguistics 1, no. 1 (2015): 289–310; S. A. Graham and S. E. Fisher, “Understanding Language from a Genomic Perspective,” Annual Review of Genetics 49 (2015): 131–160.
(4)
C. S. Lai, S. E. Fisher, J. A. Hurst, F. Vargha-Khadem, and A. P. Monaco, “A Forkhead-Domain Gene Is Mutated in a Severe Speech and Language Disorder,” Nature 413 (2001): 519–523.
(6)
S. E. Fisher, “Human Genetics: The Evolving Story of FOXP2,” Current Biology 29 (2019): R65–R67.
(7)
For early studies, See K. E. Watkins, F. Vargha-Khadem, J. Ashburner, R. D. Passingham, A. Connelly, K. J. Friston, R. S. Frackowiak, M. Mishkin, and D. G. Gadian, “MRI Analysis of an Inherited Speech and Language Disorder: Structural Brain Abnormalities,” Brain 125 (2002): 465–478; F. Liégeois, T. Baldeweg, A. Connelly, D. G. Gadian, M. Mishkin, and F. Vargha-Khadem, “Language fMRI Abnormalities Associated with FOXP2 Gene Mutation,” Nature Neuroscience 6 (2003): 1230–1237.
(8)
M. B. Johnson, Y. I., Kawasawa, C. E. Mason, Ž. Krsnik, G. Coppola, D. Bogdanović, D. H. Geschwind, S. M. Mane, M. W. State, and N. Šestan, “Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis,” Neuron 62 (2009): 494–509.
(9)
S. C. Vernes, D. F. Newbury, B. S. Abrahams, L. Winchester, J. Nicod, M. Groszer, M. Alarcón, P. L. Oliver, K. E. Davies, D. H. Geschwind, and A. P. Monaco, “A Functional Genetic Link between Distinct Developmental Language Disorders,” New England Journal of Medicine 359 (2008): 2337–2345; S. A. Graham, P. Deriziotis, and S. E. Fisher, “Insights into the Genetic Foundations of Human Communication,” Neuropsychology Review 25 (2015): 3–26; P. Deriziotis and S. E. Fisher, “Speech and Language: Translating the Genome,” Trends in Genetics 33 (2017): 642–656.
(10)
P. Pinel, F. Fauchereau, A. Moreno, A. Barbot, M. Lathrop, D. Zelenika, D. Le Bihan, J. B. Poline, T. Bourgeron, and S. Dehaene, “Genetic Variants of FOXP2 and KIAA0319/TTRAP/THEM2 Locus Are Associated with Altered Brain Activation in Distinct Language-Related Regions,” Journal of Neuroscience 32 (2012): 817–825; M. Hoogman, T. Guadalupe, M. P. Zwiers, P. Klarenbeek, C. Francks, and S. E. Fisher, “Assessing the Effects of Common Variation in the FOXP2 Gene on Human Brain Structure,” Frontiers in Human Neuroscience 8 (2014): 473; S. A. Graham and S. E. Fisher, “Understanding Language from a Genomic Perspective,” Annual Review of Genetics 49 (2015): 131–160; J. Uddén, A. Hultén, K. Bendtz, Z. Mineroff, K. S. Kucera, A. Vino, D. Fedorenko, P. Hagoort, and S. E. Fisher, “Toward Robust Functional Neuroimaging Genetics of Cognition,” Journal of Neuroscience 39 (2019): 8778–8787.
(11)
S. E. Fisher and J. C. DeFries, “Developmental Dyslexia: Genetic Dissection of a Complex Cognitive Trait,” Nature Reviews Neuroscience 3 (2002): 767–780.
(12)
J. Williams and M. C. O’Donovan, “The Genetics of Developmental Dyslexia,” European Journal of Human Genetics 14 (2006): 681–689.
(13)
A. L. Giraud and F. Ramus, “Neurogenetics and Auditory Processing in Developmental Dyslexia,” Current Opinion in Neurobiology 23 (2013): 37–42.
(14)
T. M. Centanni, A. B. Booker, F. Chen, A. M. Sloan, R. S. Carraway, R. L. Rennaker, J. J. LoTurco, and M. P. Kilgard, “Knockdown of Dyslexia-Gene Dcdc2 Interferes with Speech Sound Discrimination in Continuous Streams,” Journal of Neuroscience 36 (2016): 4895–4906.
(15)
A. M. Galaburda, J. LoTurco, F. Ramus, R. H. Fitch, and D. D. Rosen, “From Genes to Behavior in Developmental Dyslexia,” Nature Neuroscience 9 (2006): 1213–1217.
(16)
A. Gialluisi, T. Guadalupe, C. Francks, and S. E. Fisher, “Neuroimaging Genetic Analyses of Novel Candidate Genes Associated with Reading and Language,” Brain and Language 172 (2017): 9–15.
(17)
N. Becker, M. Vasconcelos, V. Oliveira, F. C. D. Santos, L. Bizarro, R. M. D. Almeida, J. Fumagalli De Salles, and M. R. S. Carvalho, “Genetic and Environmental Risk Factors for Developmental Dyslexia in Children: Systematic Review of the Last Decade,” Developmental Neuropsychology 42 (2017): 423–445.

الفصل العاشر: علم السلوك العصبي للغة

(1)
C. I. Petkov and E. Jarvis, “Birds, Primates, and Spoken Language Origins: Behavioral Phenotypes and Neurobiological Substrates,” Frontiers in Evolutionary Neuroscience 4 (2012): 12.
(2)
E. D. Jarvis, “Evolution of Vocal Learning and Spoken Language,” Science 366 (2019): 50–54.
(3)
M. D. Hauser, N. Chomsky, and W. T. Fitch, “The Faculty of Language: What Is It, Who Has It, and How Did It Evolve?” Science 298 (2002): 1569–1579; S. W. Townsend, S. Engesser, S. Stoll, K. Zuberbühler, and B. Bickel, “Compo sitionality in Animals and Humans,” PLoS Biology 16 (2018); K. Zuberbühler, 2020. “Syntax and Compositionality in Animal Communication,” Philosophical Transactions of the Royal Society B, 375, no. 1789, 20190062.
(4)
E. D. Jarvis, “Learned Birdsong and the Neurobiology of Human Language,” Annals of the New York Academy of Sciences 1016 (2004): 749; S. Nowicki and W. Searcy, “The Evolution of Vocal Learning,” Current Opinion in Neurobiology 28 (2014): 48–53; S. C. Vernes and G. S. Wilkinson, “Behaviour, Biology and Evolution of Vocal Learning in Bat,” Philosophical Transactions of the Royal Society B 375 (2020): 20190061.
(5)
Jarvis, “Learned Birdsong.”
(6)
S. Haesler, K. Wada, A. Nshdejan, E. E. Morrisey, T. Lints, E. D. Jarvis, and C. Scharff, “FoxP2 Expression in Avian Vocal Learners and Non-Learners,” Journal of Neuroscience 24 (2004): 3164–3175; S. Haesler, C. Rochefort, B. Georgi, P. Licznerski, P. Osten, and C. Scharff, “Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X,” PLoS Biology 5 (2007).
(7)
T. Q. Gentner, K. M. Fenn, D. Margoliash, and H. Nusbaum, “Recursive Syntactic Pattern Learning by Songbirds,” Nature 440 (2006): 1204–1207: “We thus Demonstrate That Starlings Can Recognize Syntactically Well-Formed Strings, Including Those That Use a Recursive Centre-Embedding Rule. At Least a Simple Level of Recursive Syntactic Pattern Processing Is Therefore Shared with Other Animals. These Results Challenge the Recent Claim that Recursion Forms the Computational Core of a Uniquely Human Narrow Faculty for Language.” For a Critical Discussion, see C. A. Van Heijningen, J. De Visser, W. Zuidema, and C. Ten Cate, “Simple Rules Can Explain Discrimination of Putative Recursive Syntactic Structures by a Songbird Species,” Proceedings of the National Academy of Sciences 106 (2009): 20538–20543.
(8)
M. S. Ficken and J. W. Popp, “Syntactical Organization of the Gargle Vocalization of the Black-Capped Chickadee,” Parus atricapillus. Ethology 91 (1992): 156–168.
(9)
C. N. Templeton, E. Greene, and K. Davis, “Allometry of Alarm Calls: BlackCapped Chickadees Encode Information about Predator Size,” Science 308 (2005): 1934–1937.
(10)
Compositionality of Calls or Songs Is Currently Not Attested in Songbirds. For a Claim That It Might Be, see S. Engesser, A. R. Ridley, and S. W. Townsend, “Meaningful Call Combinations and Compositional Processing in the Southern Pied Babbler,” Proceedings of the National Academy of Sciences 113 (2016): 5976–5981. However, there Is also Some Evidence That Their Calls Are Combinatorial: Meaningful yet Constituted of Meaningless Elements, a bit Like Words and Morphemes in Relation to Their Constituent Sounds. See S. Engesser, J. L. Holub, L. G. O’Neill, A. F. Russell, and S. W. Townsend, “Chestnut-Crowned Babbler Calls Are Composed of Meaningless Shared Building Blocks,” Proceedings of the National Academy of Sciences 116 (2019): 19579–19584.
(11)
J. P. Rauschecker and S. K. Scott, “Maps and Streams in the Auditory Cortex: Nonhuman Primates Illuminate Human Speech Processing,” Nature Neuroscience 12 (2009): 718–724; I. Bornkessel-Schlesewsky, M. Schlesewsky, S. L. Small, and J. P. Rauschecker, “Neurobiological Roots of Language in Primate Audition: Common Computational Properties,” Trends in Cognitive Sciences 19 (2015): 142–150; F. Balezeau, B. Wilson, G. Gallardo, F. Dick, W. A. Hopkins, A. Anwander, A. D. Friederici, T. D. Griffiths, and C. I. Petkov, “Primate Auditory Prototype in the Evolution of the Arcuate Fasciculus,” Nature Neuroscience 23 (2020): 1–4.
(12)
R. M. Seyfarth and D. L. Cheney, “The Origin of Meaning in Animal Signals,” Animal Behaviour 124 (2017): 339–346.
(13)
R. Gil-da-Costa, A. Martin, M. A. Lopes, M. Munoz, J. B. Fritz, and A. R. Braun, “Species-Specific Calls Activate Homologs of Broca’s and Wernicke’s Areas in the Macaque,” Nature Neuroscience 9 (2006): 1064–1070; J. P. Taglialatela, J. L. Russell, J. A. Schaeffer, and W. D. Hopkins, “Communicative Signaling Activates ‘Broca’s’ Homolog in Chimpanzees,” Current Biology 18 (2008): 343–348.
(14)
K. Ouattara, A. Lemasson, and K. Zuberbühler, “Campbell’s Monkeys Concatenate Vocalizations into Context-Specific Call Sequences,” Proceedings of the National Academy of Sciences 106 (2009): 22026–22031.
(15)
K. Arnold, and K. Zuberbühler, “Call Combinations in Monkeys: Compositional or Idiomatic Expressions?” Brain and Language 120 (2012): 303–309; K. Zuberbühler and A. Lemasson, “Primate Communication: Meaning from Strings of Calls,” in Language and Recursion, ed. Francis Lowenthal and Laurent Lefebvre, 115–125 (New York: Springer, 2014); P. Schlenker, E. Chemla, and K. Zuberbühler, “Semantics and Pragmatics of Monkey Communication,” in Oxford Research Encyclopedia of Linguistics, ed. Mark Aronoff (Oxford: Oxford University Press, 2017); K. Zuberbühler, “Combinatorial Capacities in Primates,” Current Opinion in Behavioral Sciences 21 (2018): 161–169.
(16)
Balezeau et al., “Primate Auditory Prototype.”

الفصل الحادي عشر: مستقبل اللغويات العصبية

(1)
A. L. Giraud and D. Poeppel, “Cortical Oscillations and Speech Processing: Emerging Computational Principles and Operations,” Nature Neuroscience 15 (2012): 511–517.
(2)
G. Baggio, P. Cherubini, D. Pischedda, A. Blumenthal, J. D. Haynes, and C. Reverberi, “Multiple Neural Representations of Elementary Logical Connectives,” NeuroImage 135 (2016): 300–310.
(3)
J. Holler and S. C. Levinson, “Multimodal Language Processing in Human Communication,” Trends in Cognitive Sciences 23 (2019): 639–652; F. Mollica, M. Siegelman, E. Diachek, S. T. Piantadosi, Z. Mineroff, R. Futrell, H. Kean, P. Qian, and E. Fedorenko, “Composition Is the Core Driver of the Language- Selective Network,” Neurobiology of Language 1, no. 1 (2020): 104–134.
(4)
M. H. Christiansen and N. Chater, Creating Language: Integrating Evolution, Acquisition, and Processing (Cambridge, MA: MIT Press, 2016).

جميع الحقوق محفوظة لمؤسسة هنداوي © ٢٠٢٤